example_grouped_gemm_fwd.py 7.85 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
import argparse
import tilelang
import tilelang.language as T
import math

tilelang.disable_cache()


def torch_gmm(a, b, batch_sizes, batch_offsets_tensor, trans_b=False):
    """
    Perform grouped matrix multiplication using PyTorch.

    Args:
        a (torch.Tensor): Input tensor of shape (N, K).
        b (torch.Tensor): Input tensor of shape (G, K, M).
        batch_sizes (torch.Tensor): 1D tensor containing the sizes of each group.

    Returns:
        torch.Tensor: Resulting tensor after grouped matrix multiplication.
    """
    assert a.shape[0] == sum(batch_sizes), "Sum of batch_sizes must equal the first dimension of a"
    assert b.shape[0] == len(
        batch_sizes), "The first dimension of b must match the length of batch_sizes"

    # Initialize output tensor
    output = torch.empty((sum(batch_sizes), b.shape[2]), device=a.device, dtype=a.dtype)

    # Perform grouped GEMM
    start = 0
    for i, size in enumerate(batch_sizes):
        end = start + size
        part_a = a[start:end]
        part_b = b[i].transpose(0, 1) if trans_b else b[i]
        part_out = torch.mm(part_a, part_b)
        output[start:end] = part_out
        start = end

    return output


42
@tilelang.jit(out_idx=[2])
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
def grouped_gemm(batch_sizes_list,
                 K,
                 N,
                 block_M,
                 block_N,
                 block_K,
                 num_stages=2,
                 threads=128,
                 dtype="float16"):
    """
    args:
        a (torch.Tensor): Input tensor of shape (M, K).
        b (torch.Tensor): Input tensor of shape (G, K, N).
    """
    batch_sum = sum(batch_sizes_list)
    batch_count = len(batch_sizes_list)
    accum_dtype = "float32"

    @T.prim_func
    def kernel(
            A: T.Tensor([batch_sum, K], dtype),  # type: ignore
            B: T.Tensor([batch_count, K, N], dtype),  # type: ignore
            C: T.Tensor([batch_sum, N], dtype),  # type: ignore
            batch_sizes: T.Tensor([batch_count], "int32"),  # type: ignore
            batch_offsets: T.Tensor([batch_count], "int32"),  # type: ignore
            batch_padded_offsets: T.Tensor([batch_count], "int32"),  # type: ignore
    ):

        with T.Kernel(
                T.ceildiv(batch_sum, block_M) + batch_count, T.ceildiv(N, block_N),
                threads=threads) as (bx, by):
            A_shared = T.alloc_shared([block_M, block_K], dtype)
            B_shared = T.alloc_shared([block_K, block_N], dtype)
            C_local = T.alloc_fragment([block_M, block_N], accum_dtype)
            cur_batch_idx = T.alloc_local([1], "int32")
            cur_batch_size = T.alloc_local([1], "int32")

            m_start_padded = bx * block_M

            for i in range(batch_count):
                in_cur_batch_idx = (m_start_padded >= batch_padded_offsets[i])
                cur_batch_idx[0] = T.if_then_else(in_cur_batch_idx, i, cur_batch_idx[0])

            cur_batch_size[0] = batch_sizes[cur_batch_idx[0]]
            m_start = m_start_padded - batch_padded_offsets[cur_batch_idx[0]] + batch_offsets[
                cur_batch_idx[0]]
            actual_rows = T.max(
                0,
                T.min(block_M,
                      cur_batch_size[0] + batch_padded_offsets[cur_batch_idx[0]] - m_start_padded))

            T.clear(C_local)
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                T.copy(A[m_start:m_start + block_M, k * block_K:(k + 1) * block_K], A_shared)
                T.copy(
                    B[cur_batch_idx[0], k * block_K:(k + 1) * block_K,
                      by * block_N:(by + 1) * block_N], B_shared)
                T.gemm(A_shared, B_shared, C_local)

            for i, j in T.Parallel(block_M, block_N):
                with T.If(i < actual_rows), T.Then():
                    C[m_start + i, by * block_N + j] = C_local[i, j]

    return kernel


def construct_inputs(batch_sizes_list, K, M, trans_b, padding_M, device, dtype):
    batch_sum = sum(batch_sizes_list)
    batch_count = len(batch_sizes_list)
    batch_offsets_list = [0]
    batch_padded_offsets_list = [0]
    for i in range(batch_count - 1):
        batch_offsets_list.append(batch_offsets_list[-1] + batch_sizes_list[i])
    for i in range(batch_count - 1):
        batch_padded_offsets_list.append(batch_padded_offsets_list[-1] +
                                         math.ceil((batch_sizes_list[i] + 1) / padding_M) *
                                         padding_M)
    A = torch.randn(batch_sum, K, device=device, dtype=dtype)
    B = torch.randn(batch_count, K, M, device=device, dtype=dtype)
    C = torch.empty(batch_sum, M, device=device, dtype=dtype)
    batch_sizes = torch.tensor(batch_sizes_list, device=device, dtype=torch.int32)
    batch_offsets = torch.tensor(batch_offsets_list, device=device, dtype=torch.int32)
    batch_padded_offsets = torch.tensor(batch_padded_offsets_list, device=device, dtype=torch.int32)
    # print(batch_sizes_tensor)
    # print(batch_offsets_tensor)
    # print(batch_padded_offsets_tensor)
    return A, B, C, batch_sizes, batch_offsets, batch_padded_offsets


def run_tilelang_grouped_gemm(batch_sizes_list,
                              K,
                              M,
                              block_M,
                              block_N,
                              block_K,
                              trans_b,
                              num_stages=2,
                              threads=128,
                              profile=False):
    padding_M = block_M
    batch_sum = sum(batch_sizes_list)
144
145
    kernel = grouped_gemm(
        tuple(batch_sizes_list), K, M, block_M, block_N, block_K, num_stages, threads)
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    # print(kernel.get_kernel_source())

    device = torch.device("cuda")
    dtype = torch.float16

    A, B, C, batch_sizes, batch_offsets, batch_padded_offsets = construct_inputs(
        batch_sizes_list, K, M, trans_b, padding_M, device, dtype)
    out = kernel(A, B, batch_sizes, batch_offsets, batch_padded_offsets)
    ref_output = torch_gmm(A, B, batch_sizes, batch_offsets, trans_b)
    # print(out)
    # print(ref_output)
    if torch.allclose(out, ref_output, rtol=0.01, atol=0.01):
        print("✅ Tilelang and Torch match")
    else:
        print("❌ Tilelang and Torch mismatch")

    if profile:
        profiler = kernel.get_profiler(tensor_supply_type=tilelang.TensorSupplyType.Auto)
        latency = profiler.do_bench(
            warmup=500, input_tensors=[A, B, batch_sizes, batch_offsets, batch_padded_offsets])
        print(f"Latency: {latency} ms")
        print(f"TFlops: {batch_sum * K * M * 2 / latency * 1e-9} TFlops")


def test_grouped_gemm():
    run_tilelang_grouped_gemm([64], 8192, 8192, 64, 64, 64, False)
    run_tilelang_grouped_gemm([64, 128, 256], 8192, 8192, 64, 64, 64, False)
    run_tilelang_grouped_gemm([63], 8192, 8192, 64, 64, 64, False)
    run_tilelang_grouped_gemm([100, 200, 300, 400], 8192, 8192, 64, 64, 64, False)
    run_tilelang_grouped_gemm([63, 77, 111, 280], 8192, 8192, 64, 64, 64, False)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--batch_sizes', type=str, default="64, 128", help='comma-separated batch sizes')
    parser.add_argument('--K', type=int, default=8192, help='reduce dim')
    parser.add_argument('--M', type=int, default=8192, help='output dim')
    parser.add_argument('--trans_b', action="store_true", help="transpose B")
    parser.add_argument('--profile', action="store_true", help="profile")
    args = parser.parse_args()

    batch_sizes_list = [int(x) for x in args.batch_sizes.split(",")]
    K, M, trans_b = args.K, args.M, args.trans_b

    block_M = 64
    block_N = 128
    block_K = 64
    num_stages = 2
    threads = 256

    run_tilelang_grouped_gemm(
        batch_sizes_list,
        K,
        M,
        block_M,
        block_N,
        block_K,
        trans_b,
        num_stages,
        threads,
        profile=args.profile)