example_warp_specialize_flashmla.py 7.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# use default stage 1 template, not the optimal
# schedule, please checkout examples/deepseek_mla
import torch
import torch.nn.functional as F
import tilelang
import tilelang.language as T
from einops import rearrange, einsum


def flashattn(batch, heads, kv_head_num, seqlen_kv, dim, pe_dim, block_N, block_H, num_split):
    scale = (1.0 / (dim + pe_dim))**0.5 * 1.44269504  # log2(e)
    dtype = "float16"
    accum_dtype = "float"
    kv_group_num = heads // kv_head_num
    VALID_BLOCK_H = min(block_H, kv_group_num)
    assert kv_head_num == 1, "kv_head_num must be 1"

    @T.macro
    def flash_attn(
            Q: T.Tensor([batch, heads, dim], dtype),
            Q_pe: T.Tensor([batch, heads, pe_dim], dtype),
            KV: T.Tensor([batch, seqlen_kv, kv_head_num, dim], dtype),
            K_pe: T.Tensor([batch, seqlen_kv, kv_head_num, pe_dim], dtype),
            Output: T.Tensor([batch, heads, dim], dtype),
    ):
        with T.Kernel(batch, heads // min(block_H, kv_group_num), threads=384) as (bx, by):
            Q_shared = T.alloc_shared([block_H, dim], dtype)
            S_shared = T.alloc_shared([block_H, block_N], dtype)
            Q_pe_shared = T.alloc_shared([block_H, pe_dim], dtype)
            KV_shared = T.alloc_shared([block_N, dim], dtype)
            K_pe_shared = T.alloc_shared([block_N, pe_dim], dtype)
            O_shared = T.alloc_shared([block_H, dim], dtype)
            acc_s = T.alloc_fragment([block_H, block_N], accum_dtype)
            acc_o = T.alloc_fragment([block_H, dim], accum_dtype)
            scores_max = T.alloc_fragment([block_H], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_H], accum_dtype)
            scores_scale = T.alloc_fragment([block_H], accum_dtype)
            scores_sum = T.alloc_fragment([block_H], accum_dtype)
            logsum = T.alloc_fragment([block_H], accum_dtype)

            cur_kv_head = by // (kv_group_num // block_H)
            T.use_swizzle(10)
            T.annotate_layout({
                O_shared: tilelang.layout.make_swizzled_layout(O_shared),
            })
            T.create_list_of_mbarrier(128, 128, 256, 128)

            loop_range = T.ceildiv(seqlen_kv, block_N)
            with T.ws(2):
                T.dec_max_nreg(24)
                T.copy(Q[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, :], Q_shared)
                T.copy(Q_pe[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, :], Q_pe_shared)
53
                T.barrier_arrive(barrier_id=3)
54
                for k in T.serial(loop_range):
55
                    T.barrier_wait(barrier_id=(k % 1) + 2, parity=(k % 2) ^ 1)
56
                    T.copy(KV[bx, k * block_N:(k + 1) * block_N, cur_kv_head, :], KV_shared)
57
                    T.barrier_arrive(k % 1)
58
                    T.copy(K_pe[bx, k * block_N:(k + 1) * block_N, cur_kv_head, :], K_pe_shared)
59
                    T.barrier_arrive(k % 1 + 1)
60
61
62
63
64
            with T.ws(0, 1):
                T.inc_max_nreg(240)
                T.fill(acc_o, 0)
                T.fill(logsum, 0)
                T.fill(scores_max, -T.infinity(accum_dtype))
65
                T.barrier_wait(3, 0)
66
67
                for k in T.serial(loop_range):
                    T.clear(acc_s)
68
                    T.barrier_wait(barrier_id=k % 1, parity=(k // 1) % 2)
69
70
71
72
73
74
                    T.gemm(
                        Q_shared,
                        KV_shared,
                        acc_s,
                        transpose_B=True,
                        policy=T.GemmWarpPolicy.FullCol)
75
                    T.barrier_wait(barrier_id=k % 1 + 1, parity=(k // 1) % 2)
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
                    T.gemm(
                        Q_pe_shared,
                        K_pe_shared,
                        acc_s,
                        transpose_B=True,
                        policy=T.GemmWarpPolicy.FullCol)
                    T.copy(scores_max, scores_max_prev)
                    T.fill(scores_max, -T.infinity(accum_dtype))
                    T.reduce_max(acc_s, scores_max, dim=1, clear=False)
                    for i in T.Parallel(block_H):
                        scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
                    for i, j in T.Parallel(block_H, block_N):
                        acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                    T.reduce_sum(acc_s, scores_sum, dim=1)
                    T.copy(acc_s, S_shared)
                    for i in T.Parallel(block_H):
                        logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
                    for i, j in T.Parallel(block_H, dim):
                        acc_o[i, j] *= scores_scale[i]
                    T.gemm(S_shared, KV_shared, acc_o, policy=T.GemmWarpPolicy.FullCol)
96
                    T.barrier_arrive(barrier_id=k % 1 + 2)
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
                for i, j in T.Parallel(block_H, dim):
                    acc_o[i, j] /= logsum[i]
                T.copy(acc_o, O_shared)
                T.copy(O_shared, Output[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, :])

    @T.prim_func
    def main_no_split(
            Q: T.Tensor([batch, heads, dim], dtype),
            Q_pe: T.Tensor([batch, heads, pe_dim], dtype),
            KV: T.Tensor([batch, seqlen_kv, kv_head_num, dim], dtype),
            K_pe: T.Tensor([batch, seqlen_kv, kv_head_num, pe_dim], dtype),
            glse: T.Tensor([batch, heads, num_split], dtype),
            Output_partial: T.Tensor([batch, heads, num_split, dim], dtype),
            Output: T.Tensor([batch, heads, dim], dtype),
    ):
        flash_attn(Q, Q_pe, KV, K_pe, Output)

    return main_no_split


def ref_program(q, q_pe, kv, k_pe, glse, Output_partial):
    #     """
    #     Inputs:
    #     - q (Tensor): [batch, heads, dim]
    #     - q_pe (Tensor): [batch, heads, pe_dim]
    #     - kv (Tensor): [batch, seqlen_kv, kv_head_num, dim]
    #     - k_pe (Tensor): [batch, seqlen_kv, kv_head_num, pe_dim]
    #     - glse (Tensor): [batch, heads, num_split]
    #     - Output_partial (Tensor): [batch, heads, num_split, dim]
    #     Outputs:
    #     - output (Tensor): [batch, heads, dim]
    #     """
    dim = q.shape[-1]
    pe_dim = q_pe.shape[-1]
    num_head_groups = q.shape[1] // kv.shape[2]
    scale = (dim + pe_dim)**0.5
    q = rearrange(
        q, 'b (h g) d -> b g h d', g=num_head_groups)  # [batch_size, num_head_groups, groups, dim]

    q_pe = rearrange(
        q_pe, 'b (h g) d -> b g h d',
        g=num_head_groups)  # [batch_size, num_head_groups, groups, pe_dim]

    kv = rearrange(kv, 'b n h d -> b h n d')  # [batch_size, groups, seqlen_kv, dim]

    k_pe = rearrange(k_pe, 'b n h d -> b h n d')  # [batch_size, num_head_groups, groups, pe_dim]

    query = torch.concat([q, q_pe], dim=-1)
    key = torch.concat([kv, k_pe], dim=-1)

    scores = einsum(
        query, key,
        'b g h d, b h s d -> b g h s')  # [batch_size, num_head_groups, groups, seqlen_kv]

    attention = F.softmax(
        scores / scale, dim=-1)  # [batch_size, num_head_groups, groups, seqlen_kv]

    out = einsum(attention, kv,
                 'b g h s, b h s d -> b g h d')  # [batch_size, num_head_groups, groups, dim]
    out = rearrange(out, 'b g h d -> b (h g) d')  # [batch_size, heads, dim]
    return out


def main():
161
162
163
164
165
166
167
    batch = 128
    heads = 128
    kv_heads = 1
    kv_ctx = 8192
    dim = 512
    pe_dim = 64

168
169
170
171
172
173
174
175
176
    qk_flops = 2 * batch * heads * kv_ctx * (dim + pe_dim)
    pv_flops = 2 * batch * heads * kv_ctx * dim
    total_flops = qk_flops + pv_flops
    BLOCK_N = 64
    BLOCK_H = 64
    num_split = 1

    program = flashattn(batch, heads, kv_heads, kv_ctx, dim, pe_dim, BLOCK_N, BLOCK_H, num_split)
    kernel = tilelang.compile(program, out_idx=[6])
177
    print(kernel.get_kernel_source())
178
179
180
181
182
183
184
185
186
187

    profiler = kernel.get_profiler(tensor_supply_type=tilelang.TensorSupplyType.Randn)
    profiler.assert_allclose(ref_program, rtol=0.01, atol=0.01)
    latency = profiler.do_bench(warmup=500)
    print(f"Latency: {latency} ms")
    print(f"TFlops: {total_flops / latency * 1e-9} TFlops")


if __name__ == "__main__":
    main()