"docs/git@developer.sourcefind.cn:OpenDAS/nni.git" did not exist on "006e1a0190057e94905987712ca245bf80ec09d0"
test_tilelang_kernel_deepseek_nsa.py 12.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# ruff: noqa
from tilelang import tvm as tvm
import tilelang.testing
import tilelang.language as T
import torch
from typing import Optional, Union
from einops import rearrange, repeat

tilelang.testing.set_random_seed(42)


def naive_nsa_ref(q: torch.Tensor,
                  k: torch.Tensor,
                  v: torch.Tensor,
                  g_slc: torch.Tensor,
                  g_swa: torch.Tensor,
                  block_indices: torch.LongTensor,
                  block_counts: Optional[Union[torch.LongTensor, int]] = None,
                  block_size: int = 64,
                  window_size: int = 0,
                  scale: Optional[float] = None,
                  cu_seqlens: Optional[torch.LongTensor] = None,
                  head_first: bool = False) -> torch.Tensor:

    if scale is None:
        scale = k.shape[-1]**-0.5
    if cu_seqlens is not None:
        assert q.shape[0] == 1, "batch size must be 1 when cu_seqlens are provided"
        if head_first:
            raise RuntimeError(
                "Sequences with variable lengths are not supported for head-first mode")
    if head_first:
        q, k, v, block_indices = map(lambda x: rearrange(x, 'b h t d -> b t h d'),
                                     (q, k, v, block_indices))
        g_slc, g_swa = map(lambda x: rearrange(x, 'b h t -> b t h'), (g_slc, g_swa))
        if isinstance(block_counts, torch.Tensor):
            block_counts = rearrange(block_counts, 'b h t -> b t h')

    dtype = q.dtype
    G = q.shape[2] // k.shape[2]
    BS = block_size
    S = block_indices.shape[-1]
    k, v, block_indices = (repeat(x, 'b t h d -> b t (h g) d', g=G) for x in (k, v, block_indices))
    if isinstance(block_counts, torch.Tensor):
        block_counts = repeat(block_counts, 'b t h -> b t (h g)', g=G)
    c = torch.arange(S).repeat_interleave(BS).unsqueeze(1).expand(-1, q.shape[2]).to(q.device)
    q, k, v = map(lambda x: x.float(), (q, k, v))

    o_slc = torch.zeros_like(v)
    o_swa = torch.zeros_like(v) if window_size > 0 else None
    varlen = True
    if cu_seqlens is None:
        varlen = False
        B, T = q.shape[:2]
        cu_seqlens = torch.cat(
            [block_indices.new_tensor(range(0, B * T, T)),
             block_indices.new_tensor([B * T])])

    for i in range(len(cu_seqlens) - 1):
        if not varlen:
            q_b, k_b, v_b, g_slc_b, g_swa_b, i_b = q[i], k[i], v[i], g_slc[i], g_swa[
                i], block_indices[i]
            if isinstance(block_counts, torch.Tensor):
                s_b = block_counts[i]
            else:
                s_b = block_counts
        else:
            T = cu_seqlens[i + 1] - cu_seqlens[i]
            q_b, k_b, v_b, g_slc_b, g_swa_b, i_b = map(
                lambda x: x[0][cu_seqlens[i]:cu_seqlens[i + 1]],
                (q, k, v, g_slc, g_swa, block_indices))
            if isinstance(block_counts, torch.Tensor):
                s_b = block_counts[0][cu_seqlens[i]:cu_seqlens[i + 1]]
            else:
                s_b = block_counts

        i_b = i_b.unsqueeze(-1) * BS + i_b.new_tensor(range(BS))
        # [T, S*BS, HQ]
        i_b = i_b.view(T, block_indices.shape[2], -1).transpose(1, 2)
        for i_q in range(T):
            # [HQ, D]
            q_i = q_b[i_q] * scale
            # [HQ]
            g_slc_i = g_slc_b[i_q]
            # [HQ]
            g_swa_i = g_swa_b[i_q]
            # [S*BS, HQ]
            i_i = i_b[i_q]
            # [HQ]
            if isinstance(block_counts, torch.Tensor):
                s_i = s_b[i_q]
            else:
                s_i = s_b
            # [S*BS, HQ, -1]
            k_i_slc, v_i_slc = map(
                lambda x: x.gather(
                    0,
                    i_i.clamp(0, T - 1).unsqueeze(-1).expand(*i_i.shape, x.shape[-1])), (k_b, v_b))
            # [S*BS, HQ]
            attn_slc = torch.einsum('h d, n h d -> n h', q_i, k_i_slc).masked_fill(
                torch.logical_or(i_i < 0, i_i > i_q) |
                (c >= s_i if block_counts is not None else False), float('-inf')).softmax(0)
            if not varlen:
                o_slc[i, i_q] = torch.einsum('n h, n h v -> h v', attn_slc,
                                             v_i_slc) * g_slc_i.unsqueeze(-1)
            else:
                o_slc[0][cu_seqlens[i] + i_q] = torch.einsum('n h, n h v -> h v', attn_slc,
                                                             v_i_slc) * g_slc_i.unsqueeze(-1)
            if window_size > 0:
                k_i_swa, v_i_swa = map(lambda x: x[max(0, i_q - window_size + 1):i_q + 1],
                                       (k_b, v_b))
                attn_swa = torch.einsum('h d, n h d -> n h', q_i, k_i_swa).softmax(0)
                if not varlen:
                    o_swa[i, i_q] = torch.einsum('n h, n h v -> h v', attn_swa,
                                                 v_i_swa) * g_swa_i.unsqueeze(-1)
                else:
                    o_swa[0][cu_seqlens[i] + i_q] = torch.einsum('n h, n h v -> h v', attn_swa,
                                                                 v_i_swa) * g_swa_i.unsqueeze(-1)

    if head_first:
        o_slc = rearrange(o_slc, 'b t h d -> b h t d')
        o_swa = rearrange(o_swa, 'b t h d -> b h t d')

    return o_slc.to(dtype) + o_swa.to(dtype) if o_swa is not None else o_slc.to(dtype)


def native_sparse_attention(batch,
                            heads,
                            seq_len,
                            dim,
                            is_causal,
                            scale=None,
                            block_size=64,
                            groups=16,
                            selected_blocks=16,
                            num_stages=0,
                            threads=32):
    if scale is None:
        scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    else:
        scale = scale * 1.44269504  # log2(e)

    head_kv = heads // groups
    q_shape = [batch, seq_len, heads, dim]
    kv_shape = [batch, seq_len, head_kv, dim]
    block_indices_shape = [batch, seq_len, head_kv, selected_blocks]
    block_indices_dtype = "int32"
    dtype = "float16"
    accum_dtype = "float"
    block_S = block_size
    block_T = min(128, tilelang.math.next_power_of_2(dim))

    NK = tilelang.cdiv(dim, block_T)
    NV = tilelang.cdiv(dim, block_T)
    assert NK == 1, "The key dimension can not be larger than 256"

    S = selected_blocks
    G = groups
    BS = block_S
    BK = BV = block_T

    @T.prim_func
    def native_sparse_attention(
            Q: T.Tensor(q_shape, dtype),
            K: T.Tensor(kv_shape, dtype),
            V: T.Tensor(kv_shape, dtype),
            BlockIndices: T.Tensor(block_indices_shape, block_indices_dtype),
            Output: T.Tensor(q_shape, dtype),
    ):
        with T.Kernel(seq_len, NV, batch * head_kv, threads=threads) as (bx, by, bz):
            Q_shared = T.alloc_shared([G, BK], dtype)
            K_shared = T.alloc_shared([BS, BK], dtype)
            V_shared = T.alloc_shared([BS, BV], dtype)
            O_shared = T.alloc_shared([G, BV], dtype)

            acc_s = T.alloc_fragment([G, BS], accum_dtype)
            acc_s_cast = T.alloc_fragment([G, BS], dtype)
            acc_o = T.alloc_fragment([G, BV], accum_dtype)
            scores_max = T.alloc_fragment([G], accum_dtype)
            scores_max_prev = T.alloc_fragment([G], accum_dtype)
            scores_scale = T.alloc_fragment([G], accum_dtype)
            scores_sum = T.alloc_fragment([G], accum_dtype)
            logsum = T.alloc_fragment([G], accum_dtype)

            i_t, i_v, i_bh = bx, by, bz
            i_b, i_h = i_bh // head_kv, i_bh % head_kv

            NS = S
            T.copy(Q[i_b, i_t, i_h * G:(i_h + 1) * G, :], Q_shared)

            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))

            for i in T.Pipelined(NS, num_stages=num_stages):
                i_s = BlockIndices[i_b, i_t, i_h, i] * BS
                if i_s <= i_t and i_s >= 0:
                    # [BS, BK]
                    T.copy(K[i_b, i_s:i_s + BS, i_h, :], K_shared)

                    if is_causal:
                        for i, j in T.Parallel(G, BS):
                            acc_s[i, j] = T.if_then_else(i_t >= (i_s + j), 0,
                                                         -T.infinity(acc_s.dtype))
                    else:
                        T.clear(acc_s)

                    T.gemm(
                        Q_shared,
                        K_shared,
                        acc_s,
                        transpose_B=True,
                        policy=T.GemmWarpPolicy.FullRow)

                    # Softmax
                    T.copy(scores_max, scores_max_prev)
                    T.fill(scores_max, -T.infinity(accum_dtype))
                    T.reduce_max(acc_s, scores_max, dim=1, clear=True)
                    for i in T.Parallel(G):
                        scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
                    for i, j in T.Parallel(G, BS):
                        acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                    T.reduce_sum(acc_s, scores_sum, dim=1)
                    for i in T.Parallel(G):
                        logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
                    T.copy(acc_s, acc_s_cast)

                    # Rescale
                    for i, j in T.Parallel(G, BV):
                        acc_o[i, j] *= scores_scale[i]

                    # V * softmax(Q * K)
                    T.copy(V[i_b, i_s:i_s + BS, i_h, i_v * BV:(i_v + 1) * BV], V_shared)
                    T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)

            for i, j in T.Parallel(G, BV):
                acc_o[i, j] /= logsum[i]
            T.copy(acc_o, O_shared)
            T.copy(O_shared, Output[i_b, i_t, i_h * G:(i_h + 1) * G, i_v * BV:(i_v + 1) * BV])

    return native_sparse_attention


def run_native_sparse_attention(batch,
                                heads,
                                seq_len,
                                dim,
                                is_causal,
                                scale=None,
                                block_size=64,
                                groups=16,
                                selected_blocks=16,
                                num_stages=0,
                                threads=32):
    dtype = torch.float16
    head_kv = heads // groups
    program = native_sparse_attention(batch, heads, seq_len, dim, is_causal, scale, block_size,
                                      groups, selected_blocks, num_stages, threads)
    kernel = tilelang.compile(program, out_idx=-1)
    Q = torch.randn((batch, seq_len, heads, dim), dtype=dtype).cuda()
    K = torch.randn((batch, seq_len, head_kv, dim), dtype=dtype).cuda()
    V = torch.randn((batch, seq_len, head_kv, dim), dtype=dtype).cuda()
    g_slc = torch.ones((batch, seq_len, heads), dtype=dtype).cuda()
    g_swa = torch.ones((batch, seq_len, heads), dtype=dtype).cuda()

    block_indices = torch.full((batch, seq_len, head_kv, selected_blocks),
                               seq_len,
                               dtype=torch.long,
                               device='cuda')
    for b in range(batch):
        for t in range(seq_len):
            for h in range(head_kv):
                i_i = torch.randperm(max(1, (t // block_size)))[:selected_blocks]
                block_indices[b, t, h, :len(i_i)] = i_i
    block_indices = block_indices.sort(-1)[0]
    block_counts = torch.randint(1, selected_blocks + 1, (batch, seq_len, head_kv), device='cuda')

    out = kernel(Q, K, V, block_indices.to(torch.int32))

    ref = naive_nsa_ref(
        q=Q,
        k=K,
        v=V,
        g_slc=g_slc,
        g_swa=g_swa,
        block_indices=block_indices,
        block_counts=block_counts,
        block_size=block_size,
        scale=scale,
    )
    torch.testing.assert_close(ref, out, atol=1e-2, rtol=1e-2)


def test_tilelang_kernel_deepseek_nsa():
    # disable pipeline
    run_native_sparse_attention(
        batch=2,
        heads=64,
        seq_len=1,
        dim=16,
        is_causal=True,
        scale=None,
        block_size=32,
        groups=16,
        selected_blocks=16,
        num_stages=0,
        threads=32)
    # enable pipeline
    run_native_sparse_attention(
        batch=2,
        heads=64,
        seq_len=1,
        dim=16,
        is_causal=True,
        scale=None,
        block_size=32,
        groups=16,
        selected_blocks=16,
        num_stages=2,
        threads=32)


if __name__ == "__main__":
    tilelang.testing.main()