example_dequant_gemm_mxfp4_hopper.py 17.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import tilelang
import tilelang.language as T
from tilelang.autotuner import *
from tvm import tir
import argparse
import itertools
import torch

tilelang.disable_cache()

torch.manual_seed(0)


def _tir_u8_to_f4_to_bf16(nbit: int, val: tir.PrimExpr, pos: tir.PrimExpr, scale: tir.PrimExpr,
                          dtype: str):
    assert nbit == 4
    assert dtype == "bfloat16"
    assert val.dtype == "uint8"
    mask = tir.const((1 << nbit) - 1, "uint16")
    f4 = (val >> (pos.astype("uint16") * tir.const(nbit, "uint16"))) & mask
    s = f4 >> tir.const(3, "uint16")
    e_f4 = (f4 & tir.const(6, "uint16")) >> tir.const(1, "uint16")
    # Exponential bias between f4 and bf16 is 2^(8-1) - 2^(2-1) = 126
    e_bf16 = e_f4 + tir.const(126, "uint16")
    # Scale is the exponential part, within the representation of uint8
    # To handle the overflow, we use the max function to limit the exponential part to 8 bits
    e_bf16 = T.min(e_bf16 + scale, tir.const((1 << 8) - 1, "uint16"))
    m_f4 = f4 & tir.const(1, "uint16")
    val_bf16 = tir.reinterpret("bfloat16",
                               ((((s << tir.const(8, "uint16")) | e_bf16) << tir.const(7, "uint16"))
                                | (m_f4 << tir.const(6, "uint16"))).astype("uint16"))
    return val_bf16


def torch_convert(tensor, scale_size=None, Scale=None):

    def print_bit(name, val):
        val_cpu = val.cpu().item()
        binary_repr = f'{val_cpu:032b}'
        print(name, binary_repr)

    def _convert(val, pos, scale=None):
        assert val.dtype == torch.uint8
        # val = val.view(torch.int8)
        mask = (1 << 4) - 1
        f4 = ((val >> (pos * 4)) & mask).to(torch.int16)
        s = f4 >> 3
        e_f4 = (f4 & 6) >> 1
        e_f16 = e_f4 + 126
        if scale is not None:
            e_f16 = min(e_f16 + scale, (1 << 8) - 1)
        m_f4 = f4 & 1
        m_f16 = m_f4
        val_f16 = (((e_f16 | (s << 8)) << 7) | (m_f16 << 6)) & 0xFFFF
        lower_16_bits = (val_f16 & 0xFFFF).to(torch.uint16)
        return lower_16_bits.view(torch.bfloat16)

    N = tensor.shape[0]
    K = tensor.shape[1]
    new_tensor = torch.empty(N, K * 2, dtype=torch.bfloat16, device=tensor.device)
    for i in range(new_tensor.shape[0]):
        for j in range(new_tensor.shape[1]):
            if scale_size is not None:
                new_tensor[i][j] = _convert(tensor[i][j // 2], j % 2, Scale[i][j // scale_size])
            else:
                new_tensor[i][j] = _convert(tensor[i][j // 2], j % 2)
    return new_tensor


@tilelang.jit(out_idx=[-1])
def convert(N, K, block_N, block_K, in_dtype, num_bits=4, threads=128):
    num_elems_per_byte = 8 // num_bits
    storage_dtype = "uint8"
    B_shape = (N, K // num_elems_per_byte)
    B_shared_shape = (block_N, block_K // num_elems_per_byte)
    B_dequantize_shared_shape = (block_N, block_K)

    @T.prim_func
    def main(
            B: T.Tensor(B_shape, storage_dtype),
            C: T.Tensor((N, K), in_dtype),
    ):
        with T.Kernel(T.ceildiv(N, block_N), threads=threads) as (bx):
            B_shared = T.alloc_shared(B_shared_shape, storage_dtype)
            B_local = T.alloc_fragment(B_shared_shape, storage_dtype)
            B_dequantize_local = T.alloc_fragment(B_dequantize_shared_shape, in_dtype)

            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=1):
                T.copy(B[bx * block_N, k * block_K // num_elems_per_byte], B_shared)
                T.copy(B_shared, B_local)
                for i, j in T.Parallel(block_N, block_K):
                    B_dequantize_local[i, j] = _tir_u8_to_f4_to_bf16(
                        num_bits,
                        B_local[i, j // num_elems_per_byte],
                        j % num_elems_per_byte,
                        0,  # No scale for test
                        dtype=in_dtype,
                    )
                T.copy(B_dequantize_local, C[bx * block_N, k * block_K])

    return main


@tilelang.jit(out_idx=[-1])
def convert_scale(N, K, block_N, block_K, in_dtype, num_bits=4, scale_size=32, threads=128):
    num_elems_per_byte = 8 // num_bits
    storage_dtype = "uint8"
    B_shape = (N, K // num_elems_per_byte)
    B_shared_shape = (block_N, block_K // num_elems_per_byte)
    B_dequantize_shared_shape = (block_N, block_K)
    Scale_shape = (N, K // scale_size)
    Scale_shared_shape = (block_N, block_K // scale_size)

    @T.prim_func
    def main(
            B: T.Tensor(B_shape, storage_dtype),
            Scale: T.Tensor(Scale_shape, storage_dtype),
            C: T.Tensor((N, K), in_dtype),
    ):
        with T.Kernel(T.ceildiv(N, block_N), threads=threads) as (bx):
            B_shared = T.alloc_shared(B_shared_shape, storage_dtype)
            B_local = T.alloc_fragment(B_shared_shape, storage_dtype)
            B_dequantize_local = T.alloc_fragment(B_dequantize_shared_shape, in_dtype)
            Scale_shared = T.alloc_shared(Scale_shared_shape, storage_dtype)
            Scale_local = T.alloc_fragment(Scale_shared_shape, storage_dtype)

            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=1):
                T.copy(B[bx * block_N, k * block_K // num_elems_per_byte], B_shared)
                T.copy(B_shared, B_local)
                T.copy(Scale[bx * block_N, k * block_K // scale_size], Scale_shared)
                T.copy(Scale_shared, Scale_local)
                for i, j in T.Parallel(block_N, block_K):
                    B_dequantize_local[i, j] = _tir_u8_to_f4_to_bf16(
                        num_bits,
                        B_local[i, j // num_elems_per_byte],
                        j % num_elems_per_byte,
                        Scale_local[
                            i, j //
                            scale_size],  # Scale is the exponential part, within the representation of uint8
                        dtype=in_dtype,
                    )
                T.copy(B_dequantize_local, C[bx * block_N, k * block_K])

    return main


def test_fp4_bf16_convert_close():
    N, K = 256, 256
    block_N, block_K = 64, 64
    kernel = convert(
        N,
        K,
        block_N,
        block_K,
        "bfloat16",
    )

    B = torch.randint(0, 16, (N, K // 2), dtype=torch.uint8, device="cuda").to(torch.uint8)
    tl_out = kernel(B)
    ref_out = torch_convert(B)
    assert torch.allclose(tl_out, ref_out, rtol=0.01, atol=0.01), (tl_out, ref_out)
    print("Convert Pass")


def test_fp4_bf16_convert_scale_close():
    N, K = 256, 256
    block_N, block_K = 64, 64
    kernel = convert_scale(N, K, block_N, block_K, "bfloat16", scale_size=32)

    B = torch.randint(0, 16, (N, K // 2), dtype=torch.uint8, device="cuda").to(torch.uint8)
    Scale = torch.randint(0, 1, (N, K // 32), dtype=torch.uint8, device="cuda").to(torch.uint8)
    tl_out = kernel(B, Scale)
    ref_out = torch_convert(B, scale_size=32, Scale=Scale)
    assert torch.allclose(tl_out, ref_out, rtol=0.01, atol=0.01), (tl_out, ref_out)
    print("Convert Scale Pass")


def get_configs():
    block_M = [128]
    block_N = [128, 256]
    block_K = [128]
    num_stages = [2]
    threads = [256]
    splits = [1]
    _configs = list(itertools.product(block_M, block_N, block_K, num_stages, threads, splits))

    configs = [{
        'block_M': c[0],
        'block_N': c[1],
        'block_K': c[2],
        'num_stages': c[3],
        'threads': c[4],
        'split': c[5]
    } for c in _configs]
    return configs


def matmul(M, N, K, in_dtype, out_dtype, accum_dtype, num_bits=4, scale_size=32, tune=False):

    @tilelang.jit(out_idx=[-1])
    def kernel_func(block_M, block_N, block_K, num_stages, threads, split=1):
        num_elems_per_byte = 8 // num_bits
        storage_dtype = "uint8"
        A_shape = (M, K)
        B_shape = (N, K // num_elems_per_byte)
        Scale_shape = (N, K // scale_size)
        A_shared_shape = (block_M, block_K)
        B_shared_shape = (block_N, block_K // num_elems_per_byte)
        B_dequantize_shared_shape = (block_N, block_K)
        Scale_shared_shape = (block_N, block_K // scale_size)
        assert K % (block_K * split) == 0
        KK = K // split

        @T.prim_func
        def main_split(
                A: T.Tensor(A_shape, in_dtype),
                B: T.Tensor(B_shape, storage_dtype),
                Scale: T.Tensor(Scale_shape, storage_dtype),
                Ct: T.Tensor((N, M), out_dtype),
        ):
            SplitC = T.alloc_buffer([
                split, (N + block_N - 1) // block_N * block_N,
                (M + block_M - 1) // block_M * block_M
            ], out_dtype)
            with T.Kernel(
                    T.ceildiv(N, block_N), T.ceildiv(M, block_M), split,
                    threads=threads) as (bx, by, bz):
                A_shared = T.alloc_shared(A_shared_shape, in_dtype)
                B_shared = T.alloc_shared(B_shared_shape, storage_dtype)
                B_local = T.alloc_fragment(B_shared_shape, storage_dtype)
                B_dequantize_local = T.alloc_fragment(B_dequantize_shared_shape, in_dtype)
                B_dequantize_prev_local = T.alloc_fragment(B_dequantize_shared_shape, in_dtype)
                Ct_local = T.alloc_fragment((block_N, block_M), accum_dtype)
                Ct_shared = T.alloc_shared((block_N, block_M), out_dtype)
                Scale_shared = T.alloc_shared(Scale_shared_shape, storage_dtype)
                Scale_local = T.alloc_fragment(Scale_shared_shape, storage_dtype)

                T.annotate_layout({
                    B_shared: tilelang.layout.make_swizzled_layout(B_shared),
                    Ct_shared: tilelang.layout.make_swizzled_layout(Ct_shared),
                    Scale_shared: tilelang.layout.make_swizzled_layout(Scale_shared),
                })

                T.clear(Ct_local)
                for k in T.Pipelined(K // (block_K * split), num_stages=num_stages):
                    T.copy(A[by * block_M, KK * bz + k * block_K], A_shared)
                    T.copy(B[bx * block_N, (KK * bz + k * block_K) // num_elems_per_byte], B_shared)
                    T.copy(B_shared, B_local)
                    T.copy(Scale[bx * block_N, (KK * bz + k * block_K) // scale_size], Scale_shared)
                    T.copy(Scale_shared, Scale_local)
                    for i, j in T.Parallel(block_N, block_K):
                        B_dequantize_local[i, j] = _tir_u8_to_f4_to_bf16(
                            num_bits,
                            B_local[i, j // num_elems_per_byte],
                            j % num_elems_per_byte,
                            Scale_local[i, j // scale_size],
                            dtype=in_dtype,
                        )
                    T.copy(B_dequantize_local, B_dequantize_prev_local)
                    T.gemm(B_dequantize_prev_local, A_shared, Ct_local, transpose_B=True)
                T.copy(Ct_local, SplitC[bz, bx * block_N:(bx + 1) * block_N,
                                        by * block_M:(by + 1) * block_M])
            with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M)) as (bx, by):
                acc = T.alloc_fragment((block_N, block_M), out_dtype)
                T.clear(acc)
                for k in range(split):
                    for i, j in T.Parallel(block_N, block_M):
                        acc[i, j] += SplitC[k, bx * block_N + i, by * block_M + j]
                T.copy(acc, Ct[bx * block_N, by * block_M])

        @T.prim_func
        def main(
                A: T.Tensor(A_shape, in_dtype),
                B: T.Tensor(B_shape, storage_dtype),
                Scale: T.Tensor(Scale_shape, storage_dtype),
                Ct: T.Tensor((N, M), out_dtype),
        ):
            with T.Kernel(
                    T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):
                A_shared = T.alloc_shared(A_shared_shape, in_dtype)
                B_shared = T.alloc_shared(B_shared_shape, storage_dtype)
                B_local = T.alloc_fragment(B_shared_shape, storage_dtype)
                B_dequantize_local = T.alloc_fragment(B_dequantize_shared_shape, in_dtype)
                B_dequantize_prev_local = T.alloc_fragment(B_dequantize_shared_shape, in_dtype)
                Ct_local = T.alloc_fragment((block_N, block_M), accum_dtype)
                Ct_shared = T.alloc_shared((block_N, block_M), out_dtype)
                Scale_shared = T.alloc_shared((block_N, block_K // scale_size), storage_dtype)
                Scale_local = T.alloc_fragment((block_N, block_K // scale_size), storage_dtype)

                T.annotate_layout({
                    B_shared: tilelang.layout.make_swizzled_layout(B_shared),
                    Ct_shared: tilelang.layout.make_swizzled_layout(Ct_shared),
                    Scale_shared: tilelang.layout.make_swizzled_layout(Scale_shared),
                })

                T.clear(Ct_local)
                for k in T.Pipelined(K // block_K, num_stages=num_stages):
                    T.copy(A[by * block_M, k * block_K], A_shared)
                    T.copy(B[bx * block_N, k * block_K // num_elems_per_byte], B_shared)
                    T.copy(B_shared, B_local)
                    T.copy(Scale[bx * block_N, k * block_K // scale_size], Scale_shared)
                    T.copy(Scale_shared, Scale_local)
                    for i, j in T.Parallel(block_N, block_K):
                        B_dequantize_local[i, j] = _tir_u8_to_f4_to_bf16(
                            num_bits,
                            B_local[i, j // num_elems_per_byte],
                            j % num_elems_per_byte,
                            Scale_local[i, j // scale_size],
                            dtype=in_dtype,
                        )
                    T.copy(B_dequantize_local, B_dequantize_prev_local)
                    T.gemm(B_dequantize_prev_local, A_shared, Ct_local, transpose_B=True)
                T.copy(Ct_local, Ct_shared)
                T.copy(Ct_shared, Ct[bx * block_N:(bx + 1) * block_N,
                                     by * block_M:(by + 1) * block_M])

        if split == 1:
            return main
        else:
            return main_split

    if tune:

        @autotune(
            configs=get_configs(),
            keys=["block_M", "block_N", "block_K", "num_stages", "threads", "split"],
            warmup=10,
            rep=10)
        @tilelang.jit(out_idx=[-1])
        def kernel(block_M=None,
                   block_N=None,
                   block_K=None,
                   num_stages=None,
                   threads=None,
                   split=None):
            return kernel_func(block_M, block_N, block_K, num_stages, threads, split)

        return kernel()
    else:

        def kernel(block_M, block_N, block_K, num_stages, threads, split=1):
            return kernel_func(block_M, block_N, block_K, num_stages, threads, split)

        return kernel


def ref_program(A, qB):
    dtypeC = "bfloat16"
    B = torch_convert(qB)
    C = torch.matmul(A.to(torch.float), B.T.to(torch.float))
    C = C.to(torch.__getattribute__(dtypeC))
    return C.transpose(0, 1)


def ref_program_scale(A, qB, Scale):
    dtypeC = "bfloat16"
    B = torch_convert(qB, scale_size=32, Scale=Scale)
    C = torch.matmul(A.to(torch.float), B.T.to(torch.float))
    C = C.to(torch.__getattribute__(dtypeC))
    return C.transpose(0, 1)


def main(m=256, n=256, k=256, scale_size=32, tune=False):
    total_flops = 2 * m * n * k

    if (not tune):
        kernel = matmul(
            m,
            n,
            k,
            "bfloat16",
            "bfloat16",
            "float32",
            num_bits=4,
            scale_size=scale_size,
            tune=tune)(
                block_M=128, block_N=128, block_K=128, num_stages=2, threads=256, split=1)
        profiler = kernel.get_profiler(tilelang.TensorSupplyType.Integer)
        profiler.assert_allclose(ref_program_scale, rtol=0.01, atol=0.01)
        print("All checks pass.")
        latency = profiler.do_bench(ref_program_scale, warmup=500)
        print("Ref: {:.2f} ms".format(latency))
        print("Ref: {:.2f} TFlops".format(total_flops / latency * 1e-9))
        latency = profiler.do_bench(warmup=500)
        print("Tile-lang: {:.2f} ms".format(latency))
        print("Tile-lang: {:.2f} TFlops".format(total_flops / latency * 1e-9))
    else:
        best_result = matmul(
            m,
            n,
            k,
            "bfloat16",
            "bfloat16",
            "float32",
            num_bits=4,
            scale_size=scale_size,
            tune=tune)
        best_latency = best_result.latency
        best_config = best_result.config
        print(f"Best latency: {best_latency}")
        print(f"Best TFlops: {total_flops / best_latency * 1e-9}")
        print(f"Best config: {best_config}")


def test_convert():
    test_fp4_bf16_convert_close()
    test_fp4_bf16_convert_scale_close()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--m', type=int, default=256, help='M')
    parser.add_argument('--n', type=int, default=256, help='N')
    parser.add_argument('--k', type=int, default=256, help='K')
    parser.add_argument(
        '--scale_size',
        type=int,
        default=32,
        help='scale size, the exponential part, within the representation of uint8')
    parser.add_argument('--tune', action='store_true', help='tune configs')
    args = parser.parse_args()
    M, N, K = args.m, args.n, args.k
    # test_convert()
    main(M, N, K, args.scale_size, args.tune)