topk_selector.py 9.53 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import torch
import tilelang
import tilelang.language as T

pass_configs = {
    tilelang.PassConfigKey.TL_DISABLE_THREAD_STORAGE_SYNC: True,
}


def convert_to_uint16(x):
    hval = T.Cast("float16", x)
    bits_uint = T.reinterpret("uint16", hval)
    bits_uint = T.if_then_else(x < 0, ~bits_uint & (0xFFFF), bits_uint | (0x8000))
    return bits_uint >> 8


def convert_to_uint32(x):
    bits_uint = T.reinterpret("uint32", x)
    bits_uint = T.if_then_else(
        x < 0,
        ~bits_uint & T.Cast("uint32", (0xFFFFFFFF)),
        bits_uint | T.Cast("uint32", (0x80000000)),
    )
    return bits_uint


@tilelang.jit(pass_configs=pass_configs)
def tl_topk_impl(topk, in_dtype="float32", out_dtype="int32"):
29
30
    batch = T.dynamic("batch")
    seq_len = T.dynamic("seq_len")
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    RADIX = 1 << 8
    BLOCK_SIZE = 1024
    SMEM_INPUT_SIZE = 4096  # assume the threshold bucket size after first pass is less than 4K

    @T.prim_func
    def tl_topk_kernel(
        input: T.Tensor[(batch, seq_len), in_dtype],
        index: T.Tensor[(batch, topk), out_dtype],
        starts: T.Tensor[(batch), out_dtype],
        ends: T.Tensor[(batch), out_dtype],
    ):
        with T.Kernel(batch, threads=BLOCK_SIZE) as (bx):
            tx = T.get_thread_binding()

            s_threshold_bin_id = T.alloc_shared([1], "int32")
            s_histogram = T.alloc_shared([RADIX + 1], "int32")
            s_num_input = T.alloc_shared([2], "int32")
            s_input_idx = T.alloc_shared([2, SMEM_INPUT_SIZE], "int32")

            l_threshold_bin_id = T.alloc_var("int32")
            l_new_topk = T.alloc_var("int32")
            l_num_input = T.alloc_var("int32")
            l_bin_id32 = T.alloc_var("int32")
            l_val = T.alloc_var("int32")
            l_start_pos = T.alloc_var("int32")
            l_start_idx = T.alloc_var("int32")
            l_end_idx = T.alloc_var("int32")
            l_out_pos = T.alloc_var("int32")

            l_new_topk = topk
            l_start_idx = starts[bx]
            l_end_idx = ends[bx]

            # stage 1: use 8bit to do quick topk
            T.fill(s_histogram, 0)
            T.fill(s_num_input[0], 0)

            T.sync_threads()
            for s in T.serial(T.ceildiv(seq_len, BLOCK_SIZE)):
                input_idx = s * BLOCK_SIZE + tx
                if input_idx < l_end_idx and input_idx >= l_start_idx and input_idx < seq_len:
                    inval_int16 = convert_to_uint16(input[bx, input_idx])
                    T.atomic_add(s_histogram[inval_int16], 1)
            T.sync_threads()

            # cumsum
            if tx < RADIX:
                for i in T.serial(8):
                    offset = 1 << i
                    T.sync_threads(3, RADIX)
                    if tx < RADIX - offset:
                        l_val = s_histogram[tx] + s_histogram[tx + offset]
                    T.sync_threads(3, RADIX)
                    if tx < RADIX - offset:
                        s_histogram[tx] = l_val

                # find threshold bin id
                T.sync_threads(3, RADIX)
                if s_histogram[tx] > l_new_topk and s_histogram[tx + 1] <= l_new_topk:
                    s_threshold_bin_id[0] = tx
            T.sync_threads()
            l_threshold_bin_id = s_threshold_bin_id[0]
            l_new_topk = l_new_topk - s_histogram[l_threshold_bin_id + 1]
            T.sync_threads()

            # collect all elements with exponent ≥ threshold
            for s in T.serial(T.ceildiv(seq_len, BLOCK_SIZE)):
                T.sync_threads()
                input_idx = s * BLOCK_SIZE + tx
                if input_idx < l_end_idx and input_idx >= l_start_idx and input_idx < seq_len:
                    bin_id = convert_to_uint16(input[bx, input_idx])
                    l_bin_id32 = T.Cast("int32", bin_id)
                    if l_bin_id32 > l_threshold_bin_id:
                        # need a pos = T.atomic_add(s_histogram[bin_id32+1], 1)
                        pos = T.atomic_add(s_histogram[l_bin_id32 + 1], 1, return_prev=True)
                        index[bx, pos] = input_idx

                    elif l_bin_id32 == l_threshold_bin_id and l_new_topk > 0:
                        # pos = s_num_input[0]
                        pos = T.atomic_add(s_num_input[0], 1, return_prev=True)
                        s_input_idx[0, pos] = input_idx

            # stage 2: tail pass
            for round in T.serial(4):
                if l_new_topk <= 0:
                    T.loop_break()

                r_idx = round % 2
                l_start_pos = topk - l_new_topk

                T.sync_threads()
                T.fill(s_histogram, 0)
                if tx == 0:
                    s_num_input[r_idx ^ 1] = 0
                T.sync_threads()

                l_num_input = s_num_input[r_idx]
                for s in T.serial(T.ceildiv(l_num_input, BLOCK_SIZE)):
                    if s * BLOCK_SIZE + tx < l_num_input:
                        l_bin_id32 = T.Cast("int32", ((
                            convert_to_uint32(input[bx, s_input_idx[r_idx, s * BLOCK_SIZE + tx]]) >>
                            (24 - round * 8)) & 0xFF))
                        T.atomic_add(s_histogram[l_bin_id32], 1)
                T.sync_threads()
                # cumsum
                if tx < RADIX:
                    for i in T.serial(8):
                        offset = 1 << i
                        T.sync_threads(3, RADIX)
                        if tx < RADIX - offset:
                            l_val = s_histogram[tx] + s_histogram[tx + offset]
                        T.sync_threads(3, RADIX)
                        if tx < RADIX - offset:
                            s_histogram[tx] = l_val

                    # find threshold bin id
                    T.sync_threads(3, RADIX)
                    if s_histogram[tx] > l_new_topk and s_histogram[tx + 1] <= l_new_topk:
                        s_threshold_bin_id[0] = tx
                T.sync_threads()

                l_threshold_bin_id = s_threshold_bin_id[0]
                l_new_topk = l_new_topk - s_histogram[l_threshold_bin_id + 1]
                T.sync_threads()

                for s in T.serial(T.ceildiv(l_num_input, BLOCK_SIZE)):
                    T.sync_threads()
                    if s * BLOCK_SIZE + tx < l_num_input:
                        l_bin_id32 = T.Cast("int32", ((
                            convert_to_uint32(input[bx, s_input_idx[r_idx, s * BLOCK_SIZE + tx]]) >>
                            (24 - round * 8)) & 0xFF))
                        if l_bin_id32 > l_threshold_bin_id:
                            pos = T.atomic_add(
                                s_histogram[l_bin_id32 + 1], 1, return_prev=True) + l_start_pos
                            index[bx, pos] = s_input_idx[r_idx, s * BLOCK_SIZE + tx]
                        elif l_bin_id32 == l_threshold_bin_id and l_new_topk > 0:
                            if round == 3:
                                l_out_pos = T.atomic_add(
                                    s_histogram[l_bin_id32 + 1], 1, return_prev=True) + l_start_pos
                                if l_out_pos < topk:
                                    index[bx, l_out_pos] = s_input_idx[r_idx, s * BLOCK_SIZE + tx]
                            else:
                                pos = T.atomic_add(s_num_input[r_idx ^ 1], 1, return_prev=True)
                                s_input_idx[r_idx ^ 1, pos] = s_input_idx[r_idx,
                                                                          s * BLOCK_SIZE + tx]

    return tl_topk_kernel


def tl_topk(input, starts, ends, topk):
    batch, seq_len = input.shape
    indexes = torch.zeros(batch, topk, dtype=torch.int32, device=input.device)
    kernel = tl_topk_impl(topk)
    kernel(input, indexes, starts, ends)
    return indexes


def test_topk_selector(batch=64, seq_len=32 * 1024, topk=2048):

    batch = 64
    seq_len = 32 * 1024
    topk = 2048
    torch.manual_seed(1)
    input = torch.randn(batch, seq_len, dtype=torch.float32).cuda()
    starts = torch.zeros(batch, dtype=torch.int32).cuda()
    ends = torch.ones(batch, dtype=torch.int32).cuda() * seq_len

    indexes = tl_topk(input, starts, ends, topk)
    print(indexes)

    indexes_ref = torch.topk(input, topk, dim=-1)[1]
    print(indexes_ref)

    # indexes_ref = fast_topk(input, topk)
    # print(indexes_ref)

    # Calculate intersection of out_ref and out_trt
    for i in range(batch):
        ref_np = indexes_ref[i].cpu().to(torch.int32).numpy()
        trt_np = indexes[i].cpu().to(torch.int32).numpy()

        set_ref = set(ref_np)
        set_trt = set(trt_np)
        intersection = set_ref & set_trt
        print("selected/all:", len(intersection), "/", len(set_ref), "=",
              len(intersection) / len(set_ref))

    # Performance test with CUDA events

    torch.cuda.synchronize()
    start_event = torch.cuda.Event(enable_timing=True)
    end_event = torch.cuda.Event(enable_timing=True)

    # Warmup
    for _ in range(5):
        _ = tl_topk(input, starts, ends, topk)
    torch.cuda.synchronize()

    n_iters = 20
    start_event.record()
    for _ in range(n_iters):
        _ = tl_topk(input, starts, ends, topk)
    end_event.record()
    torch.cuda.synchronize()
    elapsed_time_ms = start_event.elapsed_time(end_event)
    print(f"Average tl_topk time: {elapsed_time_ms / n_iters:.3f} ms")

    # Torch topk time
    start_event.record()
    for _ in range(n_iters):
        _ = torch.topk(input, topk, dim=-1)[1]
    end_event.record()
    torch.cuda.synchronize()
    elapsed_time_ms = start_event.elapsed_time(end_event)
    print(f"Average torch.topk time: {elapsed_time_ms / n_iters:.3f} ms")


if __name__ == "__main__":
    test_topk_selector()