example_gemm_sp.py 5.3 KB
Newer Older
1
2
3
4
5
6
7
8
# Copyright (c) Tile-AI Corporation.
# Licensed under the MIT License.
import argparse

import tilelang
import tilelang.language as T

from tilelang.layout import make_metadata_layout
9
from tilelang.utils.sparse import compress, randn_semi_sparse
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from tilelang.contrib import nvcc
from triton.testing import do_bench

import torch

arch = nvcc.get_target_compute_version()

ARCH_INFO = {"8.0": (16, "int16"), "8.9": (16, "int16"), "9.0": (8, "uint8")}

default_config = {  # take best config from autotune script
    "4090": {
        'float': {
            'block_M': 128,
            'block_N': 64,
            'block_K': 64,
            'num_stages': 1,
            'thread_num': 128,
            'policy': T.GemmWarpPolicy.Square,
            'enable_rasterization': True
        },
        'float16': {
            'block_M': 256,
            'block_N': 128,
            'block_K': 64,
            'num_stages': 2,
            'thread_num': 128,
            'policy': T.GemmWarpPolicy.Square,
            'enable_rasterization': True
        }
    },
    "h20": {
        'float': {
            'block_M': 128,
            'block_N': 64,
            'block_K': 128,
            'num_stages': 3,
            'thread_num': 128,
            'policy': T.GemmWarpPolicy.Square,
            'enable_rasterization': True
        },
        'float16': {
            'block_M': 128,
            'block_N': 64,
            'block_K': 128,
            'num_stages': 3,
            'thread_num': 128,
            'policy': T.GemmWarpPolicy.Square,
            'enable_rasterization': True
        }
    }
}


@tilelang.jit(out_idx=[-1])
def matmul_sp_fp16(M, N, K, accum_dtype, block_M, block_N, block_K, num_stages, thread_num, policy,
                   enable_rasterization):
    e_factor, e_dtype = ARCH_INFO[arch]

    @T.prim_func
    def gemm_sp_fp16(
            A_sparse: T.Tensor((M, K // 2), 'float16'),
            E: T.Tensor((M, K // e_factor), e_dtype),
            B: T.Tensor((K, N), 'float16'),
            C: T.Tensor((M, N), accum_dtype),
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=thread_num) as (bx, by):
            A_shared = T.alloc_shared((block_M, block_K // 2), 'float16')
            E_shared = T.alloc_shared((block_M, block_K // e_factor), e_dtype)
            B_shared = T.alloc_shared((block_K, block_N), 'float16')
            C_shared = T.alloc_shared((block_M, block_N), accum_dtype)
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)

            T.clear(C_local)
            T.disable_warp_group_reg_alloc()
            T.use_swizzle(panel_size=10, enable=enable_rasterization)
            T.annotate_layout({
                E:
                    make_metadata_layout(
                        E, mma_dtype="float16", backend="cutlass", block_k=block_K, arch=arch),
                E_shared:
                    make_metadata_layout(
                        E_shared,
                        mma_dtype="float16",
                        backend="cutlass",
                        block_k=block_K,
                        arch=arch),
            })
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                T.copy(A_sparse[by * block_M, k * block_K // 2], A_shared)
                T.copy(E[by * block_M, k * block_K // e_factor], E_shared)
                T.copy(B[k * block_K, bx * block_N], B_shared)
                T.gemm_sp(A_shared, E_shared, B_shared, C_local, False, False, policy=policy)

            T.copy(C_local, C_shared)
            T.copy(C_shared, C[by * block_M, bx * block_N])

    return gemm_sp_fp16


def main():
    parser = argparse.ArgumentParser(description="Autotuned MatMul Benchmark")
    parser.add_argument("--m", type=int, default=16384, help="Matrix dimension M")
    parser.add_argument("--n", type=int, default=16384, help="Matrix dimension N")
    parser.add_argument("--k", type=int, default=16384, help="Matrix dimension K")
    parser.add_argument(
        "--accum_dtype",
        type=str,
        default="float",
        choices=["float", "float16"],
        help="Accumulation datatype")
    parser.add_argument("--cfg", type=str, choices=["4090", "h20"], required=True)
    args = parser.parse_args()
    kernel = matmul_sp_fp16(args.m, args.n, args.k, args.accum_dtype,
                            **default_config[args.cfg][args.accum_dtype])

125
    a = randn_semi_sparse(args.m, args.k, device='cuda', dtype=torch.half)
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    b = torch.randn(args.k, args.n, device='cuda', dtype=torch.half)

    a_sparse, e = compress(
        a,
        transposed=False,
        block_k=default_config[args.cfg][args.accum_dtype]['block_K'],
        arch=arch)
    c = kernel(a_sparse, e, b)

    ref_c = a @ b

    assert not c.isnan().any(), "Reference result contains NaNs, please report an issue"
    torch.testing.assert_close(c, ref_c.to(c.dtype), rtol=1e-2, atol=1e-2)
    print(f"Precision check passed. diff: {(c - ref_c).abs().mean()}")

    latency = do_bench(lambda: kernel(a_sparse, e, b))
    ref_latency = do_bench(lambda: a @ b)

    total_flops = 2 * args.m * args.n * args.k
    tflops = total_flops / latency / 1e9
    ref_tflops = total_flops / ref_latency / 1e9
    print(f"Sparse TFLOPS: {tflops:.2f}, Latency: {latency/1e3} s")
    print(f"Reference TFLOPS: {ref_tflops:.2f}, Latency: {ref_latency/1e3:} s")


if __name__ == "__main__":
    main()