example_mha_sink_bwd_bhsd.py 21.9 KB
Newer Older
1
2
3
4
5
6
7
# Adapted from tilelang/examples/flash_attention/example_mha_bwd_bhsd.py

import torch
import tilelang
from tilelang.profiler import do_bench
import tilelang.language as T
import argparse
8
from typing import Optional
9
10
11
12
13
14


def get_bwd_configs():
    sm_major, sm_minor = torch.cuda.get_device_capability()
    sm_version = sm_major * 10 + sm_minor
    if sm_version == 80:
15
        return 64, 32, 1, 128
16
    elif sm_version == 90:
17
        return 128, 32, 2, 256
18
19
20
21
22
    else:
        raise ValueError(f"Unsupported SM version: {sm_version}")


@tilelang.jit(
23
    out_idx=[3, 4], pass_configs={
24
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
25
    })
26
27
28
29
30
31
def flashattn_fwd(
        batch,
        heads,
        seq_len,
        dim,
        window_size=None,  # None for full attention,
32
        sm_scale=None,
33
34
35
        block_M=64,
        block_N=64,
        num_stages=1,
36
37
        threads=128,
        dtype: str = "float16"):
38
39
40
41

    if window_size is not None:
        assert window_size % block_N == 0, "window_size must be divisible by block_N"

42
43
44
45
    if sm_scale is None:
        sm_scale = (1.0 / dim)**0.5
    scale = sm_scale * 1.44269504  # log2(e)

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    shape = [batch, heads, seq_len, dim]
    accum_dtype = "float"

    @T.prim_func
    def flash_fwd(
            Q: T.Tensor(shape, dtype),  # type: ignore
            K: T.Tensor(shape, dtype),  # type: ignore
            V: T.Tensor(shape, dtype),  # type: ignore
            Output: T.Tensor(shape, dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            Sinks: T.Tensor([heads], dtype),  # type: ignore
    ):
        with T.Kernel(T.ceildiv(seq_len, block_M), heads, batch, threads=threads) as (bx, by, bz):
            Q_shared = T.alloc_shared([block_M, dim], dtype)
            K_shared = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_N, dim], dtype)
            acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
            acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
            scores_max = T.alloc_fragment([block_M], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
            scores_scale = T.alloc_fragment([block_M], accum_dtype)
            scores_sum = T.alloc_fragment([block_M], accum_dtype)
            logsum = T.alloc_fragment([block_M], accum_dtype)
            sinks = T.alloc_fragment([heads], dtype)

            T.annotate_layout({Q_shared: tilelang.layout.make_swizzled_layout(Q_shared)})
            T.copy(Q[bz, by, bx * block_M:(bx + 1) * block_M, :], Q_shared)
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))
            for i in T.Parallel(block_M):
                sinks[i] = Sinks[by]
79

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
            end = T.min(T.ceildiv(seq_len, block_N), T.ceildiv((bx + 1) * block_M, block_N))
            start = T.alloc_local([1], 'int32')
            if window_size is not None:
                start[0] = T.max(0, (bx * block_M - window_size) // block_N)
            else:
                start[0] = 0

            for k in T.Pipelined(start[0], end, num_stages=num_stages):
                T.copy(K[bz, by, k * block_N:(k + 1) * block_N, :], K_shared)
                for i, j in T.Parallel(block_M, block_N):
                    q_idx = bx * block_M + i
                    k_idx = k * block_N + j
                    if window_size is not None:
                        acc_s[i, j] = T.if_then_else(q_idx >= k_idx and q_idx < k_idx + window_size,
                                                     0, -T.infinity(acc_s.dtype))
                    else:
                        acc_s[i, j] = T.if_then_else(q_idx >= k_idx, 0, -T.infinity(acc_s.dtype))
                T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)

                T.copy(V[bz, by, k * block_N:(k + 1) * block_N, :], V_shared)
                T.copy(scores_max, scores_max_prev)
                T.reduce_max(acc_s, scores_max, dim=1, clear=False)
                # To do causal softmax, we need to set the scores_max to 0 if it is -inf
                # This process is called Check_inf in FlashAttention3 code, and it only need to be done
                # NOTE(wt): check_inf is necessary for sliding window attention.
                for i in T.Parallel(block_M):
                    if window_size is not None:
                        scores_max[i] = T.if_then_else(scores_max[i] == -T.infinity(accum_dtype), 0,
                                                       scores_max[i])
                    scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)

                for i, j in T.Parallel(block_M, dim):
                    acc_o[i, j] *= scores_scale[i]

                for i, j in T.Parallel(block_M, block_N):
                    acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)

                T.copy(acc_s, acc_s_cast)
                T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)

                T.reduce_sum(acc_s, scores_sum, dim=1)
                for i in T.Parallel(block_M):
                    logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]

            for i in T.Parallel(block_M):
                logsum[i] += T.exp2(sinks[i] * 1.44269504 -
                                    scores_max[i] * scale)  # The only change for attention sink
            for i, j in T.Parallel(block_M, dim):
                acc_o[i, j] /= logsum[i]
            T.copy(acc_o, Output[bz, by, bx * block_M:(bx + 1) * block_M, :])
            for i in T.Parallel(block_M):
                logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale
            T.copy(logsum, lse[bz, by, bx * block_M:(bx + 1) * block_M])

    return flash_fwd


@tilelang.jit(
138
    out_idx=[2], pass_configs={
139
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
140
    })
141
def flashattn_bwd_preprocess(batch, heads, seq_len, dim, dtype: str = "float16"):
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    accum_dtype = "float"
    shape = [batch, heads, seq_len, dim]
    blk = 32

    @T.prim_func
    def flash_bwd_prep(
            O: T.Tensor(shape, dtype),  # type: ignore
            dO: T.Tensor(shape, dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, blk), batch) as (bx, by, bz):
            o = T.alloc_fragment([blk, blk], dtype)
            do = T.alloc_fragment([blk, blk], dtype)
            acc = T.alloc_fragment([blk, blk], accum_dtype)
            delta = T.alloc_fragment([blk], accum_dtype)
            T.clear(acc)
            for k in range(T.ceildiv(dim, blk)):
                T.copy(O[bz, bx, by * blk:(by + 1) * blk, k * blk:(k + 1) * blk], o)
                T.copy(dO[bz, bx, by * blk:(by + 1) * blk, k * blk:(k + 1) * blk], do)
                for i, j in T.Parallel(blk, blk):
                    acc[i, j] += o[i, j] * do[i, j]
            T.reduce_sum(acc, delta, 1)
            T.copy(delta, Delta[bz, bx, by * blk:(by + 1) * blk])

    return flash_bwd_prep


def make_dq_layout(dQ):
    # atomicAdd can not be vectorized, so we need to reorder dq to match the 8x8 gemm fragment
    return T.Layout(dQ.shape,
                    lambda b, h, l, d: [b, h, l // 8, d // 8, (d % 2), 4 * (l % 8) + (d % 8) // 2])


@tilelang.jit(
176
    out_idx=[1], pass_configs={
177
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
178
    })
179
def flashattn_bwd_postprocess(batch, heads, seq_len, dim, dtype: str = "float16"):
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    accum_dtype = "float"
    shape = [batch, heads, seq_len, dim]
    blk = 64

    @T.prim_func
    def flash_bwd_post(
            dQ: T.Tensor(shape, accum_dtype),  # type: ignore
            dQ_out: T.Tensor(shape, dtype),  # type: ignore
    ):
        with T.Kernel(T.ceildiv(seq_len, blk), heads, batch, threads=128) as (bx, by, bz):
            T.annotate_layout({dQ: make_dq_layout(dQ)})
            T.copy(
                dQ[bz, by, bx * blk:(bx + 1) * blk, :],
                dQ_out[bz, by, bx * blk:(bx + 1) * blk, :],
            )

    return flash_bwd_post


199
200
201
@tilelang.jit(pass_configs={
    tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
})
202
def flashattn_bwd(
203
204
205
206
207
208
209
    batch,
    heads,
    seq_len,
    dim,
    window_size=None,  # None for full attention
    sm_scale=None,
    dtype: str = "float16",
210
211
212
213
):

    block_M, block_N, num_stages, threads = get_bwd_configs()

214
215
    if sm_scale is None:
        sm_scale = (1.0 / dim)**0.5
216
    scale = sm_scale * 1.44269504  # log2(e)
217

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
    shape = [batch, heads, seq_len, dim]
    accum_dtype = "float"

    if window_size is not None:
        assert window_size % block_N == 0, "window_size must be divisible by block_N"

    @T.prim_func
    def flash_bwd(
            Q: T.Tensor(shape, dtype),  # type: ignore
            K: T.Tensor(shape, dtype),  # type: ignore
            V: T.Tensor(shape, dtype),  # type: ignore
            dO: T.Tensor(shape, dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            dQ: T.Tensor(shape, accum_dtype),  # type: ignore
            dK: T.Tensor(shape, dtype),  # type: ignore
            dV: T.Tensor(shape, dtype),  # type: ignore
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, block_M), batch, threads=threads) as (bx, by, bz):
            K_shared = T.alloc_shared([block_M, dim], dtype)
            dsT_shared = T.alloc_shared([block_M, block_N], dtype)
            # should not store K to local if dim is large
            # K_local = T.alloc_fragment([block_M, dim], dtype)
            # K_local_T = T.alloc_fragment([block_M, dim], dtype)
            # V_local = T.alloc_fragment([block_M, dim], dtype)
            q = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_M, dim], dtype)
            qkT = T.alloc_fragment([block_M, block_N], accum_dtype)
            dsT = T.alloc_fragment([block_M, block_N], accum_dtype)
            qkT_cast = T.alloc_fragment([block_M, block_N], dtype)
            dsT_cast = T.alloc_fragment([block_M, block_N], dtype)
            lse_shared = T.alloc_shared([block_N], accum_dtype)
            delta = T.alloc_shared([block_N], accum_dtype)
            do = T.alloc_shared([block_N, dim], dtype)
            dv = T.alloc_fragment([block_M, dim], accum_dtype)
            dk = T.alloc_fragment([block_M, dim], accum_dtype)
            dq = T.alloc_fragment([block_N, dim], accum_dtype)
            dv_shared = T.alloc_shared([block_M, dim], dtype)
            dk_shared = T.alloc_shared([block_M, dim], dtype)

            T.annotate_layout({
                dQ: make_dq_layout(dQ),
                K_shared: tilelang.layout.make_swizzled_layout(K_shared),
                dv_shared: tilelang.layout.make_swizzled_layout(dv_shared),
                dk_shared: tilelang.layout.make_swizzled_layout(dk_shared),
            })
            T.copy(K[bz, bx, by * block_M:(by + 1) * block_M, :], K_shared)
            T.copy(V[bz, bx, by * block_M:(by + 1) * block_M, :], V_shared)
            T.clear(dv)
            T.clear(dk)

            loop_st = T.floordiv(by * block_M, block_N)
            loop_ed = T.alloc_local([1], 'int32')
            if window_size is not None:
                loop_ed[0] = T.min(
                    T.ceildiv((by + 1) * block_M + window_size, block_N),
                    T.ceildiv(seq_len, block_N))
            else:
                loop_ed[0] = T.ceildiv(seq_len, block_N)
            for k in T.Pipelined(loop_st, loop_ed[0], num_stages=num_stages):
                T.copy(Q[bz, bx, k * block_N:(k + 1) * block_N, :], q)
                T.clear(qkT)
                T.gemm(K_shared, q, qkT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                T.copy(lse[bz, bx, k * block_N:(k + 1) * block_N], lse_shared)
                for i, j in T.Parallel(block_M, block_N):
                    qkT[i, j] = T.exp2(qkT[i, j] * scale - lse_shared[j])
                for i, j in T.Parallel(block_M, block_N):
                    if window_size is not None:
                        qkT[i, j] = T.if_then_else(
                            by * block_M + i <= k * block_N + j and
                            by * block_M + i > k * block_N + j - window_size, qkT[i, j], 0)
                    else:
                        qkT[i, j] = T.if_then_else(by * block_M + i <= k * block_N + j, qkT[i, j],
                                                   0)
                T.copy(dO[bz, bx, k * block_N:(k + 1) * block_N, :], dst=do)
                T.clear(dsT)
                T.gemm(V_shared, do, dsT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                T.copy(qkT, qkT_cast)
                T.gemm(qkT_cast, B=do, C=dv, policy=T.GemmWarpPolicy.FullRow)

                T.copy(Delta[bz, bx, k * block_N:(k + 1) * block_N], delta)

                for i, j in T.Parallel(block_M, block_N):
                    dsT_cast[i, j] = qkT[i, j] * (dsT[i, j] - delta[j]) * sm_scale
                T.gemm(dsT_cast, q, dk, policy=T.GemmWarpPolicy.FullRow)

                T.copy(dsT_cast, dsT_shared)
                T.clear(dq)
                T.gemm(dsT_shared, K_shared, dq, transpose_A=True)
307
308
                T.atomic_add(dQ[bz, bx, k * block_N:(k + 1) * block_N, :], dq)

309
310
311
312
313
314
315
316
317
            T.copy(dv, dv_shared)
            T.copy(dk, dk_shared)
            T.copy(dv_shared, dV[bz, bx, by * block_M:(by + 1) * block_M, :])
            T.copy(dk_shared, dK[bz, bx, by * block_M:(by + 1) * block_M, :])

    return flash_bwd


@tilelang.jit(out_idx=-1)
318
def flashattn_bwd_dsink(batch, heads, seq_len, block=128, dtype: str = "float16"):
319
320
321
322
323
324
325
326
    accum_dtype = "float"
    shape = [batch, heads, seq_len]

    @T.prim_func
    def flash_bwd_dsink(
            Sinks: T.Tensor([heads], dtype),  # type: ignore
            Delta: T.Tensor(shape, accum_dtype),  # type: ignore
            lse: T.Tensor(shape, accum_dtype),  # type: ignore
327
            dsinks: T.Tensor(shape, accum_dtype),  # type: ignore
328
329
330
331
332
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, block), batch, threads=128) as (bx, by, bz):
            sink = T.alloc_local([1], dtype)
            lse_fragment = T.alloc_fragment([block], accum_dtype)
            delta_fragment = T.alloc_fragment([block], accum_dtype)
333
            dsink_fragment = T.alloc_fragment([block], accum_dtype)
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

            sink[0] = Sinks[bx]
            T.copy(lse[bz, bx, by * block:(by + 1) * block], lse_fragment)
            T.copy(Delta[bz, bx, by * block:(by + 1) * block], delta_fragment)
            for i in T.Parallel(block):
                dsink_fragment[i] = -T.exp2(Sinks[bx] * 1.44269504 -
                                            lse_fragment[i]) * delta_fragment[i]
            T.copy(dsink_fragment, dsinks[bz, bx, by * block:(by + 1) * block])

    return flash_bwd_dsink


class _attention(torch.autograd.Function):

    @staticmethod
    def forward(ctx, q, k, v, sinks, window_size):
        BATCH, H, N_CTX, D_HEAD = q.shape
351
352
        dtype = "float16" if q.dtype == torch.float16 else "bfloat16"
        kernel = flashattn_fwd(BATCH, H, N_CTX, D_HEAD, window_size, dtype=dtype)
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
        o, lse = kernel(q, k, v, sinks)
        ctx.save_for_backward(q, k, v, sinks, o, lse)
        ctx.window_size = window_size
        return o

    @staticmethod
    def backward(ctx, do):
        q, k, v, sinks, o, lse = ctx.saved_tensors
        BATCH, H, N_CTX, D_HEAD = q.shape

        def maybe_contiguous(x):
            if x.stride(-1) != 1:
                return x.contiguous()
            return x

        do, q, k, v, sinks, o = [maybe_contiguous(x) for x in (do, q, k, v, sinks, o)]
369
370
371
        dtype = "float16" if q.dtype == torch.float16 else "bfloat16"
        kernel_prep = flashattn_bwd_preprocess(BATCH, H, N_CTX, D_HEAD, dtype=dtype)
        kernel_post = flashattn_bwd_postprocess(BATCH, H, N_CTX, D_HEAD, dtype=dtype)
372
        delta = kernel_prep(o, do)
373
        kernel = flashattn_bwd(BATCH, H, N_CTX, D_HEAD, ctx.window_size, dtype=dtype)
374
375
        shape = [BATCH, H, N_CTX, D_HEAD]
        dq = torch.zeros(shape, dtype=torch.float32, device=q.device)  # acc for atomicAdd
376
377
        dk = torch.empty(shape, dtype=q.dtype, device=q.device)
        dv = torch.empty(shape, dtype=q.dtype, device=q.device)
378
379
380
        kernel(q, k, v, do, lse, delta, dq, dk, dv)
        dq = kernel_post(dq)

381
        kernel_dsink = flashattn_bwd_dsink(BATCH, H, N_CTX, dtype=dtype)
382
383
384
385
386
387
388
389
390
391
392
393
394
        dsinks = kernel_dsink(sinks, delta, lse).sum(0).sum(1)
        return dq, dk, dv, dsinks, None


attention = _attention.apply


# Adapted and optimized from
# https://github.com/openai/gpt-oss/blob/main/gpt_oss/triton/attention.py
def ref_program(query: torch.Tensor,
                key: torch.Tensor,
                value: torch.Tensor,
                sinks: torch.Tensor,
395
396
                sliding_window: Optional[int] = None,
                dtype: torch.dtype = torch.float16) -> torch.Tensor:
397
398
399
400
401
402
403
404
405
406
407
408

    query = query.transpose(1, 2).contiguous().unsqueeze(
        3)  # align with the original function's interface
    key = key.transpose(1, 2).contiguous()
    value = value.transpose(1, 2).contiguous()

    batch_size, num_queries, num_key_value_heads, num_key_value_groups, head_dim = query.shape
    batch_size, num_keys, num_key_value_heads, head_dim = key.shape
    start_q = num_keys - num_queries

    sm_scale: float = 1.0 / head_dim**0.5

409
    sinks = sinks.view(1, num_key_value_heads, num_key_value_groups, 1, 1)
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    key = key.unsqueeze(3)
    value = value.unsqueeze(3)

    pos_keys = torch.arange(num_keys, device=query.device)
    pos_queries = torch.arange(num_queries, device=query.device) + start_q
    mask = pos_keys[None, :] > pos_queries[:, None]
    mask = mask.float().masked_fill(mask, float("-inf"))

    if sliding_window:
        too_old = pos_keys[None, :] < (pos_queries[:, None] - sliding_window + 1)
        mask.masked_fill_(too_old, float("-inf"))

    logits = torch.einsum("bqhmd,bkhmd->bhmqk", query.float(), key.float()) * sm_scale
    logits = logits + mask[None, None, None, :, :]

    logits_max = torch.max(logits, dim=-1, keepdim=True).values
    logits_or_sinks_max = torch.maximum(sinks, logits_max)
    sinks = torch.exp(sinks - logits_or_sinks_max)
    unnormalized_scores = torch.exp(logits - logits_or_sinks_max)
    normalizer = unnormalized_scores.sum(dim=-1, keepdim=True) + sinks
    scores = unnormalized_scores / normalizer

    output = torch.einsum("bhmqk,bkhmd->bqhmd", scores, value.float())

    output = output.reshape(batch_size, num_queries, num_key_value_heads * num_key_value_groups,
435
                            head_dim).to(dtype)
436
437
438
439
440
441
442
    return output.transpose(1, 2).contiguous()


def main(BATCH: int = 1,
         H: int = 1,
         N_CTX: int = 512,
         D_HEAD: int = 128,
443
444
445
         window_size: int | None = None,
         dtype: str = "float16"):
    torch_dtype = {"float16": torch.float16, "bfloat16": torch.bfloat16}[dtype]
446
447
448
449
450
451
452
453
454
455
    if window_size is not None:
        print('Using sliding window attention.')
        assert window_size <= N_CTX
        flops_per_matmul = 2.0 * BATCH * H * min(
            window_size, N_CTX // 2) * N_CTX * D_HEAD  # just a rough estimation
    else:
        print('Using full attention.')
        flops_per_matmul = 2.0 * BATCH * H * N_CTX * N_CTX * D_HEAD * 0.5
    total_flops = 5 * flops_per_matmul

456
457
458
459
    Q = (torch.randn(BATCH, H, N_CTX, D_HEAD, dtype=torch_dtype, device="cuda").requires_grad_())
    K = torch.randn_like(Q).requires_grad_()
    V = torch.randn_like(Q).requires_grad_()
    sinks = torch.randn(H, dtype=torch_dtype, device=Q.device).requires_grad_()
460
461
462
463
464
465
466
467
468
    dO = torch.randn_like(Q)

    O = attention(Q, K, V, sinks, window_size)
    O.backward(dO, retain_graph=True)
    dQ, Q.grad = Q.grad.clone(), None
    dK, K.grad = K.grad.clone(), None
    dV, V.grad = V.grad.clone(), None
    dsinks, sinks.grad = sinks.grad.clone(), None

469
    O_ref = ref_program(Q, K, V, sinks, window_size, dtype=torch_dtype)
470
471
472
473
474
475
476
    O_ref.backward(dO, retain_graph=True)
    dQ_ref, Q.grad = Q.grad.clone(), None
    dK_ref, K.grad = K.grad.clone(), None
    dV_ref, V.grad = V.grad.clone(), None
    dsinks_ref, sinks.grad = sinks.grad.clone(), None

    # Checks
477
478
479
480
481
482
483
484
485
486
487
488
489
490
    rtol, atol = {
        "float16": (1e-2, 1e-2),
        "bfloat16": (2e-2, 2e-2),
    }[dtype]
    assert torch.allclose(O, O_ref, rtol=rtol, atol=atol), f'O max err: {(O-O_ref).abs().max()}'
    assert torch.allclose(
        dV, dV_ref, rtol=rtol, atol=atol), f'dV max err: {(dV-dV_ref).abs().max()}'
    assert torch.allclose(
        dK, dK_ref, rtol=rtol, atol=atol), f'dK max err: {(dK-dK_ref).abs().max()}'
    assert torch.allclose(
        dQ, dQ_ref, rtol=rtol, atol=atol), f'dq max err: {(dQ-dQ_ref).abs().max()}'
    assert torch.allclose(
        dsinks, dsinks_ref, rtol=rtol,
        atol=atol), f'dsinks max err: {(dsinks-dsinks_ref).abs().max()}'
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511

    print("All checks passed for tilelang kernels.✅")

    # Only benchmark backward here
    def torch_bwd():
        O_ref.backward(dO, retain_graph=True)

    def tl_bwd():
        O.backward(dO, retain_graph=True)

    latency = do_bench(torch_bwd, warmup=500)
    print("torch: {:.2f} ms".format(latency))
    print("torch: {:.2f} TFlops".format(total_flops / latency * 1e-9))
    latency = do_bench(tl_bwd, warmup=500)
    print("tilelang: {:.2f} ms".format(latency))
    print("tilelang: {:.2f} TFlops".format(total_flops / latency * 1e-9))


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=1, help='Batch size')
512
513
    parser.add_argument('--h', type=int, default=64, help='Number of heads')
    parser.add_argument('--n_ctx', type=int, default=4096, help='Context size')
514
515
516
517
518
519
    parser.add_argument('--d_head', type=int, default=128, help='Head dimension')
    parser.add_argument(
        '--window_size',
        type=int,
        default=None,
        help='window size (default: None, which means full attention)')
520
521
    parser.add_argument(
        '--dtype', type=str, default="float16", help="dtype, can be float16 or bfloat16")
522
    args = parser.parse_args()
523
    main(args.batch, args.h, args.n_ctx, args.d_head, args.window_size, args.dtype)