example_gqa_sink_bwd_bhsd.py 22.4 KB
Newer Older
1
2
3
4
5
6
7
# Adapted from tilelang/examples/flash_attention/example_gqa_bwd.py

import torch
import tilelang
from tilelang.profiler import do_bench
import tilelang.language as T
import argparse
8
from typing import Optional
9
10
11
12
13
14


def get_bwd_configs():
    sm_major, sm_minor = torch.cuda.get_device_capability()
    sm_version = sm_major * 10 + sm_minor
    if sm_version == 80:
15
        return 64, 32, 1, 128
16
    elif sm_version == 90:
17
        return 128, 32, 2, 256
18
19
20
21
22
    else:
        raise ValueError(f"Unsupported SM version: {sm_version}")


@tilelang.jit(
23
    out_idx=[3, 4], pass_configs={
24
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
25
    })
26
27
28
29
30
31
def flashattn_fwd(
        batch,
        heads,
        seq_len,
        dim,
        groups=1,
32
33
34
35
36
37
38
        window_size=None,  # None for full attention
        sm_scale=None,
        block_M=64,
        block_N=64,
        num_stages=1,
        threads=128,
        dtype: str = "float16"):
39
40
41
42

    if window_size is not None:
        assert window_size % block_N == 0, "window_size must be divisible by block_N"

43
44
45
46
    if sm_scale is None:
        sm_scale = (1.0 / dim)**0.5
    scale = sm_scale * 1.44269504  # log2(e)

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    head_kv = heads // groups
    q_shape = [batch, heads, seq_len, dim]
    kv_shape = [batch, head_kv, seq_len, dim]
    accum_dtype = "float"

    @T.prim_func
    def flash_fwd(
            Q: T.Tensor(q_shape, dtype),  # type: ignore
            K: T.Tensor(kv_shape, dtype),  # type: ignore
            V: T.Tensor(kv_shape, dtype),  # type: ignore
            Output: T.Tensor(q_shape, dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            Sinks: T.Tensor([heads], dtype),  # type: ignore
    ):
        with T.Kernel(T.ceildiv(seq_len, block_M), heads, batch, threads=threads) as (bx, by, bz):
            Q_shared = T.alloc_shared([block_M, dim], dtype)
            K_shared = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_N, dim], dtype)
            acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
            acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
            scores_max = T.alloc_fragment([block_M], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
            scores_scale = T.alloc_fragment([block_M], accum_dtype)
            scores_sum = T.alloc_fragment([block_M], accum_dtype)
            logsum = T.alloc_fragment([block_M], accum_dtype)
            sinks = T.alloc_fragment([heads], dtype)

            T.annotate_layout({Q_shared: tilelang.layout.make_swizzled_layout(Q_shared)})
            T.copy(Q[bz, by, bx * block_M:(bx + 1) * block_M, :], Q_shared)
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))
            for i in T.Parallel(block_M):
                sinks[i] = Sinks[by]

            end = T.min(T.ceildiv(seq_len, block_N), T.ceildiv((bx + 1) * block_M, block_N))
            start = T.alloc_local([1], 'int32')
            if window_size is not None:
                start[0] = T.max(0, (bx * block_M - window_size) // block_N)
            else:
                start[0] = 0

            for k in T.Pipelined(start[0], end, num_stages=num_stages):
                T.copy(K[bz, by // groups, k * block_N:(k + 1) * block_N, :], K_shared)
                for i, j in T.Parallel(block_M, block_N):
                    q_idx = bx * block_M + i
                    k_idx = k * block_N + j
                    if window_size is not None:
                        acc_s[i, j] = T.if_then_else(q_idx >= k_idx and q_idx < k_idx + window_size,
                                                     0, -T.infinity(acc_s.dtype))
                    else:
                        acc_s[i, j] = T.if_then_else(q_idx >= k_idx, 0, -T.infinity(acc_s.dtype))
                T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)

                T.copy(V[bz, by // groups, k * block_N:(k + 1) * block_N, :], V_shared)
                T.copy(scores_max, scores_max_prev)
                T.reduce_max(acc_s, scores_max, dim=1, clear=False)
                # To do causal softmax, we need to set the scores_max to 0 if it is -inf
                # This process is called Check_inf in FlashAttention3 code, and it only need to be done
                # NOTE(wt): check_inf is necessary for sliding window attention.
                for i in T.Parallel(block_M):
                    if window_size is not None:
                        scores_max[i] = T.if_then_else(scores_max[i] == -T.infinity(accum_dtype), 0,
                                                       scores_max[i])
                    scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)

                for i, j in T.Parallel(block_M, dim):
                    acc_o[i, j] *= scores_scale[i]

                for i, j in T.Parallel(block_M, block_N):
                    acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)

                T.copy(acc_s, acc_s_cast)
                T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)

                T.reduce_sum(acc_s, scores_sum, dim=1)
                for i in T.Parallel(block_M):
                    logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]

            for i in T.Parallel(block_M):
                logsum[i] += T.exp2(sinks[i] * 1.44269504 -
                                    scores_max[i] * scale)  # The only change for attention sink
            for i, j in T.Parallel(block_M, dim):
                acc_o[i, j] /= logsum[i]
            T.copy(acc_o, Output[bz, by, bx * block_M:(bx + 1) * block_M, :])
            for i in T.Parallel(block_M):
                logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale
            T.copy(logsum, lse[bz, by, bx * block_M:(bx + 1) * block_M])

    return flash_fwd


@tilelang.jit(
141
    out_idx=[2], pass_configs={
142
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
143
    })
144
def flashattn_bwd_preprocess(batch, heads, seq_len, dim, dtype: str = "float16"):
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    accum_dtype = "float"
    shape = [batch, heads, seq_len, dim]
    blk = 32

    @T.prim_func
    def flash_bwd_prep(
            O: T.Tensor(shape, dtype),  # type: ignore
            dO: T.Tensor(shape, dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, blk), batch) as (bx, by, bz):
            o = T.alloc_fragment([blk, blk], dtype)
            do = T.alloc_fragment([blk, blk], dtype)
            acc = T.alloc_fragment([blk, blk], accum_dtype)
            delta = T.alloc_fragment([blk], accum_dtype)
            T.clear(acc)
            for k in range(T.ceildiv(dim, blk)):
                T.copy(O[bz, bx, by * blk:(by + 1) * blk, k * blk:(k + 1) * blk], o)
                T.copy(dO[bz, bx, by * blk:(by + 1) * blk, k * blk:(k + 1) * blk], do)
                for i, j in T.Parallel(blk, blk):
                    acc[i, j] += o[i, j] * do[i, j]
            T.reduce_sum(acc, delta, 1)
            T.copy(delta, Delta[bz, bx, by * blk:(by + 1) * blk])

    return flash_bwd_prep


def make_dq_layout(dQ):
    # atomicAdd can not be vectorized, so we need to reorder dq to match the 8x8 gemm fragment
    return T.Layout(dQ.shape,
                    lambda b, h, l, d: [b, h, l // 8, d // 8, (d % 2), 4 * (l % 8) + (d % 8) // 2])


@tilelang.jit(
179
    out_idx=[1], pass_configs={
180
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
181
    })
182
def flashattn_bwd_postprocess(batch, heads, seq_len, dim, dtype: str = "float16"):
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    accum_dtype = "float"
    shape = [batch, heads, seq_len, dim]
    blk = 64

    @T.prim_func
    def flash_bwd_post(
            dQ: T.Tensor(shape, accum_dtype),  # type: ignore
            dQ_out: T.Tensor(shape, dtype),  # type: ignore
    ):
        with T.Kernel(T.ceildiv(seq_len, blk), heads, batch, threads=128) as (bx, by, bz):
            T.annotate_layout({dQ: make_dq_layout(dQ)})
            T.copy(
                dQ[bz, by, bx * blk:(bx + 1) * blk, :],
                dQ_out[bz, by, bx * blk:(bx + 1) * blk, :],
            )

    return flash_bwd_post


202
203
204
@tilelang.jit(pass_configs={
    tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
})
205
206
207
208
209
210
211
212
213
214
def flashattn_bwd(batch,
                  heads,
                  seq_len,
                  dim,
                  groups,
                  window_size=None,
                  sm_scale=None,
                  dtype="float16"):  # None for full attention
    if sm_scale is None:
        sm_scale = (1.0 / dim)**0.5
215
    scale = sm_scale * 1.44269504  # log2(e)
216

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    head_kv = heads // groups
    q_shape = [batch, heads, seq_len, dim]
    kv_shape = [batch, head_kv, seq_len, dim]
    accum_dtype = "float"

    block_M, block_N, num_stages, threads = get_bwd_configs()

    if window_size is not None:
        assert window_size % block_N == 0, "window_size must be divisible by block_N"

    @T.prim_func
    def flash_bwd(
            Q: T.Tensor(q_shape, dtype),  # type: ignore
            K: T.Tensor(kv_shape, dtype),  # type: ignore
            V: T.Tensor(kv_shape, dtype),  # type: ignore
            dO: T.Tensor(q_shape, dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            dQ: T.Tensor(q_shape, accum_dtype),  # type: ignore
236
237
            dK: T.Tensor(kv_shape, accum_dtype),  # type: ignore
            dV: T.Tensor(kv_shape, accum_dtype),  # type: ignore
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, block_M), batch, threads=threads) as (bx, by, bz):
            K_shared = T.alloc_shared([block_M, dim], dtype)
            dsT_shared = T.alloc_shared([block_M, block_N], dtype)
            q = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_M, dim], dtype)
            qkT = T.alloc_fragment([block_M, block_N], accum_dtype)
            dsT = T.alloc_fragment([block_M, block_N], accum_dtype)
            qkT_cast = T.alloc_fragment([block_M, block_N], dtype)
            dsT_cast = T.alloc_fragment([block_M, block_N], dtype)
            lse_shared = T.alloc_shared([block_N], accum_dtype)
            delta = T.alloc_shared([block_N], accum_dtype)
            do = T.alloc_shared([block_N, dim], dtype)
            dv = T.alloc_fragment([block_M, dim], accum_dtype)
            dk = T.alloc_fragment([block_M, dim], accum_dtype)
            dq = T.alloc_fragment([block_N, dim], accum_dtype)
254
255
            dv_shared = T.alloc_shared([block_M, dim], accum_dtype)
            dk_shared = T.alloc_shared([block_M, dim], accum_dtype)
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

            T.annotate_layout({
                dQ: make_dq_layout(dQ),
                K_shared: tilelang.layout.make_swizzled_layout(K_shared),
                dv_shared: tilelang.layout.make_swizzled_layout(dv_shared),
                dk_shared: tilelang.layout.make_swizzled_layout(dk_shared),
            })
            T.copy(K[bz, bx // groups, by * block_M:(by + 1) * block_M, :], K_shared)
            T.copy(V[bz, bx // groups, by * block_M:(by + 1) * block_M, :], V_shared)
            T.clear(dv)
            T.clear(dk)

            loop_st = T.floordiv(by * block_M, block_N)
            loop_ed = T.alloc_local([1], 'int32')
            if window_size is not None:
                loop_ed[0] = T.min(
                    T.ceildiv((by + 1) * block_M + window_size, block_N),
                    T.ceildiv(seq_len, block_N))
            else:
                loop_ed[0] = T.ceildiv(seq_len, block_N)
            for k in T.Pipelined(loop_st, loop_ed[0], num_stages=num_stages):
                T.copy(Q[bz, bx, k * block_N:(k + 1) * block_N, :], q)
                T.clear(qkT)
                T.gemm(K_shared, q, qkT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                T.copy(lse[bz, bx, k * block_N:(k + 1) * block_N], lse_shared)
                for i, j in T.Parallel(block_M, block_N):
                    qkT[i, j] = T.exp2(qkT[i, j] * scale - lse_shared[j])
                for i, j in T.Parallel(block_M, block_N):
                    if window_size is not None:
                        qkT[i, j] = T.if_then_else(
                            by * block_M + i <= k * block_N + j and
                            by * block_M + i > k * block_N + j - window_size, qkT[i, j], 0)
                    else:
                        qkT[i, j] = T.if_then_else(by * block_M + i <= k * block_N + j, qkT[i, j],
                                                   0)
                T.copy(dO[bz, bx, k * block_N:(k + 1) * block_N, :], dst=do)
                T.clear(dsT)
                T.gemm(V_shared, do, dsT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                T.copy(qkT, qkT_cast)
295
                T.gemm(qkT_cast, do, dv, policy=T.GemmWarpPolicy.FullRow)
296
297
298
299
300
301
302
303
304
305

                T.copy(Delta[bz, bx, k * block_N:(k + 1) * block_N], delta)

                for i, j in T.Parallel(block_M, block_N):
                    dsT_cast[i, j] = qkT[i, j] * (dsT[i, j] - delta[j]) * sm_scale
                T.gemm(dsT_cast, q, dk, policy=T.GemmWarpPolicy.FullRow)

                T.copy(dsT_cast, dsT_shared)
                T.clear(dq)
                T.gemm(dsT_shared, K_shared, dq, transpose_A=True)
306
                T.atomic_add(dQ[bz, bx, k * block_N:(k + 1) * block_N, :], dq)
307

308
309
310
311
            T.copy(dv, dv_shared)
            T.atomic_add(dV[bz, bx // groups, by * block_M:(by + 1) * block_M, :], dv_shared)
            T.copy(dk, dk_shared)
            T.atomic_add(dK[bz, bx // groups, by * block_M:(by + 1) * block_M, :], dk_shared)
312
313
314
315
316

    return flash_bwd


@tilelang.jit(out_idx=-1)
317
def flashattn_bwd_dsink(batch, heads, seq_len, block=256, dtype: str = "float16"):
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
    accum_dtype = "float"
    shape = [batch, heads, seq_len]

    @T.prim_func
    def flash_bwd_dsink(
            Sinks: T.Tensor([heads], dtype),  # type: ignore
            Delta: T.Tensor(shape, accum_dtype),  # type: ignore
            lse: T.Tensor(shape, accum_dtype),  # type: ignore
            dsinks: T.Tensor(shape, dtype),  # type: ignore
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, block), batch, threads=256) as (bx, by, bz):
            sink = T.alloc_local([1], dtype)
            lse_fragment = T.alloc_fragment([block], accum_dtype)
            delta_fragment = T.alloc_fragment([block], accum_dtype)
            dsink_fragment = T.alloc_fragment([block], dtype)

            sink[0] = Sinks[bx]
            T.copy(lse[bz, bx, by * block:(by + 1) * block], lse_fragment)
            T.copy(Delta[bz, bx, by * block:(by + 1) * block], delta_fragment)
            for i in T.Parallel(block):
                dsink_fragment[i] = -T.exp2(Sinks[bx] * 1.44269504 -
                                            lse_fragment[i]) * delta_fragment[i]
            T.copy(dsink_fragment, dsinks[bz, bx, by * block:(by + 1) * block])

    return flash_bwd_dsink


class _attention(torch.autograd.Function):

    @staticmethod
    def forward(ctx, q, k, v, sinks, window_size, groups):
349
350
351
352
353
354
355

        def maybe_contiguous(x):
            if x.stride(-1) != 1:
                return x.contiguous()
            return x

        q, k, v, sinks = [maybe_contiguous(x) for x in (q, k, v, sinks)]
356
        BATCH, H, N_CTX, D_HEAD = q.shape
357
358
        dtype = "float16" if q.dtype == torch.float16 else "bfloat16"
        kernel = flashattn_fwd(BATCH, H, N_CTX, D_HEAD, groups, window_size, dtype=dtype)
359
360
361
362
363
364
365
366
367
368
369
        o, lse = kernel(q, k, v, sinks)
        ctx.save_for_backward(q, k, v, sinks, o, lse)
        ctx.window_size = window_size
        ctx.groups = groups
        return o

    @staticmethod
    def backward(ctx, do):
        q, k, v, sinks, o, lse = ctx.saved_tensors
        BATCH, H, N_CTX, D_HEAD = q.shape
        groups = ctx.groups
370
        dtype = "float16" if q.dtype == torch.float16 else "bfloat16"
371

372
373
        kernel_prep = flashattn_bwd_preprocess(BATCH, H, N_CTX, D_HEAD, dtype=dtype)
        kernel_post = flashattn_bwd_postprocess(BATCH, H, N_CTX, D_HEAD, dtype=dtype)
374
        delta = kernel_prep(o, do)
375
        kernel = flashattn_bwd(BATCH, H, N_CTX, D_HEAD, groups, ctx.window_size, dtype=dtype)
376
377
378
379
        q_shape = [BATCH, H, N_CTX, D_HEAD]
        head_kv = H // groups
        kv_shape = [BATCH, head_kv, N_CTX, D_HEAD]
        dq = torch.zeros(q_shape, dtype=torch.float32, device=q.device)  # acc for atomicAdd
380
381
        dk = torch.zeros(kv_shape, dtype=torch.float32, device=q.device)
        dv = torch.zeros(kv_shape, dtype=torch.float32, device=q.device)
382
383
384
        kernel(q, k, v, do, lse, delta, dq, dk, dv)
        dq = kernel_post(dq)

385
        kernel_dsink = flashattn_bwd_dsink(BATCH, H, N_CTX, dtype=dtype)
386
387
388
389
390
391
392
393
394
395
396
397
398
        dsinks = kernel_dsink(sinks, delta, lse).sum(0).sum(1)
        return dq, dk, dv, dsinks, None, None


attention = _attention.apply


# Adapted and optimized from
# https://github.com/openai/gpt-oss/blob/main/gpt_oss/triton/attention.py
def ref_program(query: torch.Tensor,
                key: torch.Tensor,
                value: torch.Tensor,
                sinks: torch.Tensor,
399
400
                sliding_window: Optional[int] = None,
                dtype: torch.dtype = torch.float16) -> torch.Tensor:
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437

    key = key.transpose(1, 2).contiguous()
    value = value.transpose(1, 2).contiguous()
    batch_size, num_keys, num_key_value_heads, head_dim = key.shape
    query = query.transpose(1, 2).contiguous()
    query = query.view(batch_size, query.shape[1], num_key_value_heads, -1, head_dim)
    batch_size, num_queries, num_key_value_heads, num_key_value_groups, head_dim = query.shape

    start_q = num_keys - num_queries
    sm_scale: float = 1.0 / head_dim**0.5

    sinks = sinks.view(1, num_key_value_heads, num_key_value_groups, 1, 1).float()
    key = key.unsqueeze(3)
    value = value.unsqueeze(3)

    pos_keys = torch.arange(num_keys, device=query.device)
    pos_queries = torch.arange(num_queries, device=query.device) + start_q
    mask = pos_keys[None, :] > pos_queries[:, None]
    mask = mask.float().masked_fill(mask, float("-inf"))

    if sliding_window:
        too_old = pos_keys[None, :] < (pos_queries[:, None] - sliding_window + 1)
        mask.masked_fill_(too_old, float("-inf"))

    logits = torch.einsum("bqhmd,bkhmd->bhmqk", query.float(), key.float()) * sm_scale
    logits = logits + mask[None, None, None, :, :]

    logits_max = torch.max(logits, dim=-1, keepdim=True).values
    logits_or_sinks_max = torch.maximum(sinks, logits_max)
    sinks = torch.exp(sinks - logits_or_sinks_max)
    unnormalized_scores = torch.exp(logits - logits_or_sinks_max)
    normalizer = unnormalized_scores.sum(dim=-1, keepdim=True) + sinks
    scores = unnormalized_scores / normalizer

    output = torch.einsum("bhmqk,bkhmd->bqhmd", scores, value.float())

    output = output.reshape(batch_size, num_queries, num_key_value_heads * num_key_value_groups,
438
                            head_dim).to(dtype)
439
440
441
442
443
444
445
446
    return output.transpose(1, 2).contiguous()


def main(BATCH: int = 1,
         H: int = 8,
         N_CTX: int = 512,
         D_HEAD: int = 64,
         groups: int = 2,
447
448
449
         window_size: int | None = None,
         dtype: str = "float16"):
    torch_dtype = {"float16": torch.float16, "bfloat16": torch.bfloat16}[dtype]
450
451
452
453
454
455
456
457
458
459
    if window_size is not None:
        print('Using sliding window attention.')
        assert window_size <= N_CTX
        flops_per_matmul = 2.0 * BATCH * H * min(
            window_size, N_CTX // 2) * N_CTX * D_HEAD  # just a rough estimation
    else:
        print('Using full attention.')
        flops_per_matmul = 2.0 * BATCH * H * N_CTX * N_CTX * D_HEAD * 0.5
    total_flops = 5 * flops_per_matmul

460
461
462
463
464
    Q = (torch.randn(BATCH, H, N_CTX, D_HEAD, dtype=torch_dtype, device="cuda").requires_grad_())
    K = torch.randn(
        BATCH, H // groups, N_CTX, D_HEAD, dtype=torch_dtype, device="cuda").requires_grad_()
    V = torch.randn_like(K).requires_grad_()
    sinks = torch.randn(H, dtype=torch_dtype, device="cuda").requires_grad_()
465
466
467
468
469
470
471
472
473
    dO = torch.randn_like(Q)

    O = attention(Q, K, V, sinks, window_size, groups)
    O.backward(dO, retain_graph=True)
    dQ, Q.grad = Q.grad.clone(), None
    dK, K.grad = K.grad.clone(), None
    dV, V.grad = V.grad.clone(), None
    dsinks, sinks.grad = sinks.grad.clone(), None

474
    O_ref = ref_program(Q, K, V, sinks, window_size, dtype=torch_dtype)
475
476
477
478
479
480
481
    O_ref.backward(dO, retain_graph=True)
    dQ_ref, Q.grad = Q.grad.clone(), None
    dK_ref, K.grad = K.grad.clone(), None
    dV_ref, V.grad = V.grad.clone(), None
    dsinks_ref, sinks.grad = sinks.grad.clone(), None

    # Checks
482
483
484
485
486
487
488
489
490
491
492
493
494
495
    rtol, atol = {
        "float16": (1e-2, 1e-2),
        "bfloat16": (2e-2, 2e-2),
    }[dtype]
    assert torch.allclose(O, O_ref, rtol=rtol, atol=atol), f'O max err: {(O-O_ref).abs().max()}'
    assert torch.allclose(
        dV, dV_ref, rtol=rtol, atol=atol), f'dV max err: {(dV-dV_ref).abs().max()}'
    assert torch.allclose(
        dK, dK_ref, rtol=rtol, atol=atol), f'dK max err: {(dK-dK_ref).abs().max()}'
    assert torch.allclose(
        dQ, dQ_ref, rtol=rtol, atol=atol), f'dq max err: {(dQ-dQ_ref).abs().max()}'
    assert torch.allclose(
        dsinks, dsinks_ref, rtol=rtol,
        atol=atol), f'dsinks max err: {(dsinks-dsinks_ref).abs().max()}'
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

    print("All checks passed for tilelang kernels.✅")

    # Only benchmark backward here
    def torch_bwd():
        O_ref.backward(dO, retain_graph=True)

    def tl_bwd():
        O.backward(dO, retain_graph=True)

    latency = do_bench(torch_bwd, warmup=500)
    print("torch: {:.2f} ms".format(latency))
    print("torch: {:.2f} TFlops".format(total_flops / latency * 1e-9))
    latency = do_bench(tl_bwd, warmup=500)
    print("tilelang: {:.2f} ms".format(latency))
    print("tilelang: {:.2f} TFlops".format(total_flops / latency * 1e-9))


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=1, help='Batch size')
    parser.add_argument('--h', type=int, default=64, help='Number of heads')
518
    parser.add_argument('--n_ctx', type=int, default=4096, help='Context size')
519
520
521
522
523
524
525
    parser.add_argument('--d_head', type=int, default=128, help='Head dimension')
    parser.add_argument('--groups', type=int, default=8, help='Groups')
    parser.add_argument(
        '--window_size',
        type=int,
        default=None,
        help='window size (default: None, which means full attention)')
526
527
    parser.add_argument(
        '--dtype', type=str, default="float16", help="dtype, can be float16 or bfloat16")
528
    args = parser.parse_args()
529
    main(args.batch, args.h, args.n_ctx, args.d_head, args.groups, args.window_size, args.dtype)