test_arith_intset.py 13.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from tilelang import tvm
import tvm.testing
from tvm import te
from tvm import tir
from tvm.arith.analyzer import Analyzer


class IntSetChecker:
    def __init__(self):
        self.analyzer = tvm.arith.Analyzer()

    def verify(self, data, dmap, expected):
        res = self.analyzer.int_set(data, dmap)

        def err_msg():
            return "\ndata={}\ndmap={}\nres={}\nexpected={}".format(data, dmap, res, expected)

        assert self.analyzer.can_prove_equal(res.min_value, expected[0]), err_msg()
        assert self.analyzer.can_prove_equal(res.max_value, expected[1]), err_msg()


def test_basic():
    s = tvm.arith.IntervalSet(2, 3)
    assert s.min_value.value == 2
    assert s.max_value.value == 3

    s = tvm.arith.IntSet.single_point(2)
    assert s.min_value.value == 2
    assert s.max_value.value == 2


def test_vector():
    base = 10
    stride = 3
    lanes = 2
    s = tvm.arith.IntSet.vector(tvm.tir.Ramp(base, stride, lanes))
    assert s.min_value.value == base
    assert s.max_value.value == base + stride * (lanes - 1)


def test_scalable_vector():
    base = 5
    s = tvm.arith.IntSet.vector(tvm.tir.Ramp(base, 2, tvm.tir.vscale() * 4))

    assert s.min_value.value == base
    assert s.max_value.same_as(tvm.arith.int_set.pos_inf())


def test_add_sub():
    ck = IntSetChecker()
    x, y = te.var("x"), te.var("y")
    ck.verify(x + y, {x: tvm.arith.IntervalSet(0, 10)}, (y, 10 + y))
    ck.verify(x + y, {x: tvm.arith.IntervalSet(0, 10), y: tvm.arith.IntervalSet(1, 11)}, (1, 21))
    ck.verify(x - y, {x: tvm.arith.IntervalSet(0, 10), y: tvm.arith.IntervalSet(1, 11)}, (-11, 9))


def test_mul_div():
    ck = IntSetChecker()
    x, y = te.var("x"), te.var("y")

    tdiv = tvm.tir.truncdiv
    ck.analyzer.update(y, tvm.arith.ConstIntBound(1, 100), override=True)
    ck.verify(x * y, {x: tvm.arith.IntervalSet(0, 10)}, (0, 10 * y))
    ck.verify(x * 2, {x: tvm.arith.IntervalSet(1, 10)}, (2, 20))
    ck.verify(x * -2, {x: tvm.arith.IntervalSet(1, 10)}, (-20, -2))

    ck.verify(tdiv(x, y), {x: tvm.arith.IntervalSet(0, 10)}, (0, tdiv(10, y)))
    ck.verify(tdiv(x, 2), {x: tvm.arith.IntervalSet(1, 10)}, (0, 5))

    fld = tvm.te.floordiv
    ck.verify(fld(x, y), {x: tvm.arith.IntervalSet(0, 10)}, (0, fld(10, y)))
    ck.verify(fld(x, 2), {x: tvm.arith.IntervalSet(-1, 10)}, (-1, 5))


def test_mod():
    ck = IntSetChecker()
    x, y = te.var("x"), te.var("y")
    tmod = tvm.tir.truncmod
    ck.analyzer.update(y, tvm.arith.ConstIntBound(1, 100), override=True)
    ck.verify(tmod(x, y), {x: tvm.arith.IntervalSet(0, 10)}, (0, y - 1))
    ck.verify(tmod(x, 10), {x: tvm.arith.IntervalSet(1, 10)}, (0, 9))

    flm = tvm.te.floormod
    ck.verify(flm(x, 10), {x: tvm.arith.IntervalSet(-10, 10)}, (0, 9))
    ck.verify(flm(x, 10), {x: tvm.arith.IntervalSet(3, 5)}, (3, 5))
    ck.verify(flm(x, 10), {x: tvm.arith.IntervalSet(13, 15)}, (3, 5))
    ck.verify(flm(x, 10), {x: tvm.arith.IntervalSet(3, 15)}, (0, 9))
    ck.verify(flm(x, 10), {x: tvm.arith.IntervalSet(3, 11)}, (0, 9))
    ck.verify(flm(x, 10), {x: tvm.arith.IntervalSet(1, 21)}, (0, 9))

    fld = tvm.te.floordiv
    z = te.var("z")
    ck.analyzer.bind(x, tvm.ir.Range.from_min_extent(0, 3))
    ck.verify(
        flm(y, 8),
        {y: tvm.arith.IntervalSet(z * 8 + x * 4, z * 8 + x * 4 + 3)},
        (
            z * 8 + x * 4 - 8 * fld(z * 8 + x * 4, 8),
            z * 8 + x * 4 + 3 - 8 * fld(z * 8 + x * 4, 8),
        ),
    )
    ck1 = IntSetChecker()
    ck1.analyzer.bind(x, tvm.ir.Range.from_min_extent(0, 2))
    ck1.verify(flm(y, 8), {y: tvm.arith.IntervalSet(z * 8 + x * 4, z * 8 + x * 4 + 3)}, (x * 4, x * 4 + 3))


def test_max_min():
    ck = IntSetChecker()
    x, y = te.var("x"), te.var("y")
    ck.verify(tvm.te.max(x, x + 1), {x: tvm.arith.IntervalSet(0, 10)}, (1, 11))
    ck.verify(tvm.te.min(x - 1, x + 1), {x: tvm.arith.IntervalSet(0, 10)}, (-1, 9))
    ck.verify(tvm.te.min(x, y), {}, (tvm.te.min(x, y), tvm.te.min(x, y)))
    ck.verify(tvm.te.max(x, y), {}, (tvm.te.max(x, y), tvm.te.max(x, y)))


def test_select():
    ck = IntSetChecker()
    # x, y = te.var("x"), te.var("y")
    x = te.var("x")
    ck.verify(tvm.tir.Select(x > 0, x - 1, x + 1), {x: tvm.arith.IntervalSet(0, 10)}, (-1, 11))


def check_region_bound(expect_region, var_dom, mode, predicate=None):
    """Helper to check region bound estimation.

    Parameters
    ----------
    expect_region: dict
        The keys are of form (begin, end) or PrimExpr as a single point. The values are
        expected estimated region or region dict on different bindings.

    var_dom: dict
        Map var to iteration domain range.

    mode: str
        Specify "lowerbound", "upperbound" or else use strict bound estimation.

    predicate: PrimExpr
        Extra predicate, defaults to True.
    """
    if predicate is None:
        predicate = tvm.tir.IntImm("bool", 1)
    region = []
    expect = []
    for k, v in expect_region.items():
        if not isinstance(k, (tuple, list)):
            k = (k, k + 1)
        region.append(tvm.ir.Range.from_min_extent(k[0], Analyzer().simplify(k[1] - k[0])))
        expect.append(v)
    if mode == "lowerbound":
        result = tvm.arith.estimate_region_lower_bound(region=region, var_dom=var_dom, predicate=predicate)
    elif mode == "upperbound":
        result = tvm.arith.estimate_region_upper_bound(region=region, var_dom=var_dom, predicate=predicate)
    else:
        result = tvm.arith.estimate_region_strict_bound(region=region, var_dom=var_dom, predicate=predicate)
    if result is None:
        assert all([_ is None for _ in expect])
        return
    assert len(result) == len(expect)
    for intset, expect_desc in zip(result, expect):
        if isinstance(expect_desc, dict):
            # check range on different free var bindings
            for binding in expect_desc:
                analyzer = Analyzer()
                for k, v in binding:
                    analyzer.bind(k, v)
                expect_begin, expect_end = expect_desc[binding]
                result_begin = analyzer.simplify(intset.min_value, 3)
                result_end = analyzer.simplify(intset.max_value + 1, 3)
                assert analyzer.can_prove_equal(result_begin - expect_begin, 0), f"{result_begin} vs {expect_begin}"
                assert analyzer.can_prove_equal(result_end - expect_end, 0), f"{result_end} vs {expect_end}"
        else:
            # check range
            expect_begin, expect_end = expect_desc
            analyzer = Analyzer()
            assert analyzer.can_prove_equal(intset.min_value - expect_begin, 0), f"{intset.min_value} vs {expect_begin}"
            assert analyzer.can_prove_equal(intset.max_value - expect_end + 1, 0), f"{intset.max_value} vs {expect_end - 1}"


def test_region_bound_not_independent():
    # (i, i+2) and (i+2, i+4) are dependent, this the lowerbound is not available
    i = tvm.tir.Var("i", "int32")
    var_dom = {
        i: tvm.ir.Range(begin=0, end=64),
    }
    check_region_bound({(i, i + 2): None, (i + 2, i + 4): None}, var_dom, mode="lowerbound")
    check_region_bound({(i, i + 2): (0, 65), (i + 2, i + 4): (2, 67)}, var_dom, mode="upperbound")

    # when only a subset of access indices are affine
    i, j, k = tvm.tir.Var("i", "int32"), tvm.tir.Var("j", "int32"), tvm.tir.Var("k", "int32")
    var_dom = {
        i: tvm.ir.Range(begin=0, end=16),
        j: tvm.ir.Range(begin=0, end=16),
        k: tvm.ir.Range(begin=0, end=16),
    }
    check_region_bound(
        {i // 4: None, j * 4 + i % 4: None, tir.truncdiv(k, 2): None},
        var_dom,
        predicate=j * 4 + i % 4 > 3,
        mode="lowerbound",
    )
    check_region_bound(
        {i // 4: (0, 4), j * 4 + i % 4: (4, 64), tir.truncdiv(k, 2): (0, 8)},
        var_dom,
        predicate=j * 4 + i % 4 > 3,
        mode="upperbound",
    )


def test_region_bound_stride_too_wide():
    i = tvm.tir.Var("i", "int32")
    var_dom = {i: tvm.ir.Range(begin=0, end=64)}
    check_region_bound({(i * 4, i * 4 + 2): None}, var_dom, mode="lowerbound")
    check_region_bound({(i * 4, i * 4 + 2): (0, 254)}, var_dom, mode="upperbound")


def test_region_bound_small_stride():
    i = tvm.tir.Var("i", "int32")
    var_dom = {
        i: tvm.ir.Range(begin=0, end=64),
    }
    check_region_bound({(i * 4, i * 4 + 8): (0, 260)}, var_dom, mode="lowerbound")


def test_region_lower_bound_split_predicate():
    x_o = tvm.tir.Var("xo", "int32")
    x_i = tvm.tir.Var("xi", "int32")
    x = x_o * 4 + x_i
    var_dom = {
        x_o: tvm.ir.Range(begin=0, end=16),
        x_i: tvm.ir.Range(begin=0, end=4),
    }
    check_region_bound({(x * 4, x * 4 + 8): (0, 256)}, var_dom, predicate=x < 63, mode="lowerbound")

    check_region_bound(
        {(x * 4, x * 4 + 8): (0, 256), (x * 3, x * 3 + 5): (0, 191)},
        var_dom,
        predicate=x < 63,
        mode="upperbound",
    )


def test_region_lower_bound_multiple_variables():
    div = tvm.tir.floordiv
    mod = tvm.tir.floormod
    x = tvm.tir.Var("x", "int32")
    wid = tvm.tir.Var("wid", "int32")
    i = div(x, 16)
    j = div(mod(x, 16), 4) * 8 + mod(x, 4) + div(wid, 32) * 4
    k = wid % 32
    var_dom = {
        x: tvm.ir.Range(begin=0, end=32),
        wid: tvm.ir.Range(begin=0, end=64),
    }
    check_region_bound({i: (0, 2), j: (0, 32), k: (0, 32)}, var_dom, mode="lowerbound")


def test_region_lower_bound_negative_scale():
    i = tvm.tir.Var("i", "int32")
    j = tvm.tir.Var("j", "int32")
    var_dom = {
        i: tvm.ir.Range(begin=0, end=4),
        j: tvm.ir.Range(begin=0, end=4),
    }
    check_region_bound({(1 - i, 5 - i): (-2, 5), (20 - j * 4, 36 - j * 4): (8, 36)}, var_dom, mode="lowerbound")


def test_region_lower_bound_for_non_perfect_tile():
    h1 = tvm.tir.Var("h1", "int32")
    h2 = tvm.tir.Var("h2", "int32")
    h3 = tvm.tir.Var("h3", "int32")

    # non-uniform tiling, single inner variable
    var_dom = {
        h2: tvm.ir.Range(begin=0, end=10),
    }
    check_region_bound(
        {
            h3 * 8 + h2: {
                (): (
                    tvm.tir.max(h3 * 8, 1),
                    tvm.tir.min(0, h3 * 8 - 214) + 224,
                ),
                ((h3, 0),): (1, 10),  # h3 == 0: region is [1, 10)
                ((h3, 10),): (h3 * 8, h3 * 8 + 10),  # 0 < h3 <= 26: region is [h3 * 8, h3 * 8 + 10)
                ((h3, 27),): (h3 * 8, 224),  # h3 > 26: region is [h3 * 8, 224)
            }
        },
        var_dom,
        predicate=tvm.tir.all(h3 * 8 + h2 >= 1, h3 * 8 + h2 < 224),
        mode="lowerbound",
    )

    # non-uniform tiling, two inner variables
    var_dom = {
        h1: tvm.ir.Range(begin=0, end=5),
        h2: tvm.ir.Range(begin=0, end=2),
    }
    check_region_bound(
        {
            h3 * 8 + h2 * 5 + h1: {
                (): (
                    tvm.tir.max(h3 * 8, 1),
                    tvm.tir.min(0, h3 * 8 - 214) + 224,
                ),
                ((h3, 0),): (1, 10),
                ((h3, 10),): (h3 * 8, h3 * 8 + 10),
                ((h3, 27),): (h3 * 8, 224),
            }
        },
        var_dom,
        predicate=tvm.tir.all(h3 * 8 + h2 * 5 + h1 >= 1, h3 * 8 + h2 * 5 + h1 < 224),
        mode="lowerbound",
    )

    # lowerbound should fail on incompatible predicates
    check_region_bound(
        {h3 * 8 + h2 * 5 + h1: None},
        var_dom,
        predicate=tvm.tir.all(h3 * 8 + h2 * 5 + h1 >= 1, h3 * 8 + h1 * 2 + h2 < 224),
        mode="lowerbound",
    )
    check_region_bound(
        {h3 * 8 + h2 * 5 + h1: (h3 * 8, h3 * 8 + 10)},
        var_dom,
        predicate=tvm.tir.all(h3 * 8 + h2 * 5 + h1 >= 1, h3 * 8 + h1 * 2 + h2 < 224),
        mode="upperbound",
    )


def test_region_lower_bound_unfusable():
    var_dom = {
        tvm.tir.Var("i", "int32"): tvm.ir.Range(8),
        tvm.tir.Var("j", "int32"): tvm.ir.Range(4),
    }
    i, j = var_dom
    check_region_bound({(i + j) // 2: (0, 6)}, var_dom, mode="lowerbound")


def test_union_lower_bound():
    neg_inf = tvm.arith.int_set.neg_inf()
    pos_inf = tvm.arith.int_set.pos_inf()
    set_0 = tvm.arith.IntervalSet(min_value=neg_inf, max_value=0)
    set_1 = tvm.arith.IntervalSet(min_value=1, max_value=pos_inf)
    result = tvm.arith.int_set.union_lower_bound([set_0, set_1])
    assert result.min_value.same_as(neg_inf)
    assert result.max_value.same_as(pos_inf)
    set_2 = tvm.arith.IntervalSet(min_value=pos_inf, max_value=neg_inf)
    result = tvm.arith.int_set.union_lower_bound([set_0, set_1, set_2])
    assert result.min_value.same_as(neg_inf)
    assert result.max_value.same_as(pos_inf)


def test_modular_set():
    ck = IntSetChecker()
    x = tvm.te.var("x", dtype="int32")
    y = tvm.te.var("y", dtype="int32")
    expr = (x * 2048 + y * 16) % 7168
    ck.verify(expr, {x: tvm.arith.IntervalSet(0, 128), y: tvm.arith.IntervalSet(0, 3584)}, (0, 7152))


if __name__ == "__main__":
    tvm.testing.main()