test_tilelang_dynamic_symbolic.py 15.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
import torch
import torch.backends
from tilelang import tvm as tvm
import tilelang.testing
from tvm import DataType
import tilelang.language as T
from tilelang.intrinsics.utils import get_swizzle_layout
from tilelang.intrinsics.mma_macro_generator import (TensorCoreIntrinEmitter)

10
tilelang.testing.set_random_seed(0)
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98


def make_swizzle_layout(shared_buf):
    dtype = shared_buf.dtype
    shape = shared_buf.shape

    can_swizzle = shape[-1] * DataType(dtype).bits == 512
    if not can_swizzle:
        return T.Layout(shape, lambda *args: args)

    def transform_func(i, j):
        new_warp_i, new_warp_j = get_swizzle_layout(i, j, shape[-1], dtype)
        return [new_warp_i, new_warp_j]

    return T.Layout(shape, transform_func)


def tl_matmul_macro(
    N,
    K,
    in_dtype,
    out_dtype,
    accum_dtype,
):
    assert in_dtype in [
        "float16",
        "int8",
    ], "Currently only float16 and int8 are supported"
    assert out_dtype in [
        "float16",
        "float32",
        "int32",
    ], "Currently only float16, float32 and int32 are supported"

    micro_size_x = micro_size_y = micro_size_k = 16

    if out_dtype == "int32":
        micro_size_k = 32

    # This is a debug config
    block_row_warps = 1
    block_col_warps = 1
    warp_row_tiles = 16
    warp_col_tiles = 16
    chunk = 32 if in_dtype == "float16" else 64
    shared_scope = "shared.dyn"

    # Pipeline Stage
    stage = 2

    block_M = block_row_warps * warp_row_tiles
    block_N = block_col_warps * warp_col_tiles
    block_K = chunk

    M = tvm.te.var("m")
    A_shape = (M, K)
    B_shape = (N, K)
    A_shared_shape = (block_M, block_K)
    B_shared_shape = (block_N, block_K)
    C_shared_shape = (
        block_M // micro_size_x,
        block_N // micro_size_y,
        micro_size_x,
        micro_size_y,
    )

    warp_size = 32
    threads = warp_size * (block_row_warps * block_col_warps)
    local_size = (micro_size_x * micro_size_y) // warp_size
    warp_rows = warp_row_tiles // micro_size_x
    warp_cols = warp_col_tiles // micro_size_y

    # MMA Wrapper to Auto Generate Code for MMA
    mma_emitter = TensorCoreIntrinEmitter(
        a_dtype=in_dtype,
        b_dtype=in_dtype,
        accum_dtype=accum_dtype,
        a_transposed=False,
        b_transposed=True,
        block_row_warps=block_row_warps,
        block_col_warps=block_col_warps,
        warp_row_tiles=warp_row_tiles,
        warp_col_tiles=warp_col_tiles,
        chunk=chunk,
    )

    @T.prim_func
    def main(
99
100
101
            A: T.Tensor(A_shape, in_dtype),
            B: T.Tensor(B_shape, in_dtype),
            C: T.Tensor((M, N), out_dtype),
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):

            A_shared = T.alloc_shared(A_shared_shape, in_dtype, scope=shared_scope)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype, scope=shared_scope)
            C_shared = T.alloc_shared(C_shared_shape, out_dtype, scope=shared_scope)
            A_local = T.alloc_local((warp_rows * local_size), in_dtype)
            B_local = T.alloc_local((warp_cols * local_size), in_dtype)
            C_local = T.alloc_local((warp_rows * warp_cols * local_size), accum_dtype)

            T.annotate_layout({
                A_shared: make_swizzle_layout(A_shared),
                B_shared: make_swizzle_layout(B_shared),
            })

            # Improve L2 Cache
            T.use_swizzle(panel_size=10)

            T.clear(C_local)

            for ko in T.Pipelined((K // block_K), num_stages=stage):

                # Load A into shared memory
                for i, k in T.Parallel(block_M, block_K):
                    A_shared[i, k] = A[by * block_M + i, ko * block_K + k]

                # Load B into shared memory
                for j, k in T.Parallel(block_N, block_K):
                    B_shared[j, k] = B[bx * block_N + j, ko * block_K + k]

                for ki in T.serial(0, (block_K // micro_size_k)):

                    # Load A into fragment
                    mma_emitter.ldmatrix_a(
                        A_local,
                        A_shared,
                        ki,
                    )

                    # Load B into fragment
                    mma_emitter.ldmatrix_b(
                        B_local,
                        B_shared,
                        ki,
                    )

                    # Perform Matrix Multiplication
                    mma_emitter.mma(A_local, B_local, C_local)

            # Perform STMatrix
            mma_emitter.stmatrix(
                C_local,
                C_shared,
            )

            # Store shared into global
            for i, j in T.Parallel(block_M, block_N):
                C[by * block_M + i, bx * block_N + j] = C_shared[
                    i // micro_size_x,
                    j // micro_size_y,
                    i % micro_size_x,
                    j % micro_size_y,
                ]

    return main


def assert_tl_matmul_macro_correctness(M, N, K, in_dtype, out_dtype, accum_dtype):
    matmul = tl_matmul_macro(N, K, in_dtype, out_dtype, accum_dtype)

172
173
    kernel = tilelang.compile(matmul, out_idx=[2])
    src_code = kernel.get_kernel_source()
174
175
176
177
178
179
180
181

    # src_code is the generated cuda source
    assert src_code is not None

    A = torch.rand(M, K, device="cuda", dtype=getattr(torch, in_dtype))
    B = torch.rand(N, K, device="cuda", dtype=getattr(torch, in_dtype))
    C = torch.zeros(M, N, device="cuda", dtype=getattr(torch, accum_dtype))

182
    C = kernel(A, B)
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

    # Get Reference Result
    ref_c = torch.matmul(A, B.T).to(getattr(torch, accum_dtype))
    torch.testing.assert_close(C, ref_c, rtol=1e-2, atol=1e-2)


def tl_matmul_block(
    N,
    K,
    block_M,
    block_N,
    block_K,
    trans_A,
    trans_B,
    in_dtype,
    out_dtype,
    accum_dtype,
    num_stages,
    threads,
):
    M = tvm.te.var("m")
    A_shape = (K, M) if trans_A else (M, K)
    B_shape = (N, K) if trans_B else (K, N)
    A_shared_shape = (block_K, block_M) if trans_A else (block_M, block_K)
    B_shared_shape = (block_N, block_K) if trans_B else (block_K, block_N)

    @T.prim_func
210
    def main(A: T.Tensor(A_shape, in_dtype), B: T.Tensor(B_shape, in_dtype), C: T.Tensor(
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
        (M, N), out_dtype)):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):
            A_shared = T.alloc_shared(A_shared_shape, in_dtype)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype)
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
            T.clear(C_local)
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                if trans_A:
                    T.copy(A[k * block_K, by * block_M], A_shared)
                else:
                    T.copy(A[by * block_M, k * block_K], A_shared)
                if trans_B:
                    T.copy(B[bx * block_N, k * block_K], B_shared)
                else:
                    T.copy(B[k * block_K, bx * block_N], B_shared)
                T.gemm(A_shared, B_shared, C_local, trans_A, trans_B)
            T.copy(C_local, C[by * block_M, bx * block_N])

    return main


def assert_tl_matmul_block_correctness(
    M,
    N,
    K,
    trans_A,
    trans_B,
    in_dtype,
    out_dtype,
    dtypeAccum,
    block_M,
    block_N,
    block_K,
    num_stages=3,
    num_threads=128,
):
    program = tl_matmul_block(
        N,
        K,
        block_M,
        block_N,
        block_K,
        trans_A,
        trans_B,
        in_dtype,
        out_dtype,
        dtypeAccum,
        num_stages,
        num_threads,
    )
261
262

    kernel = tilelang.compile(program, out_idx=[2])
263
264
265
266
267

    A = torch.rand(M, K, device="cuda", dtype=getattr(torch, in_dtype))
    B = torch.rand(N, K, device="cuda", dtype=getattr(torch, in_dtype))
    C = torch.zeros(M, N, device="cuda", dtype=getattr(torch, out_dtype))

268
    C = kernel(A, B)
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

    def ref_program(A, B):
        import torch

        if trans_A:
            A = A.T
        if trans_B:
            B = B.T
        C = torch.matmul(A.to(torch.float), B.to(torch.float))
        C = C.to(torch.__getattribute__(out_dtype))
        return C

    # Get Reference Result
    ref_c = ref_program(A, B)

    torch.testing.assert_close(C, ref_c, rtol=1e-2, atol=1e-2)


def tl_matmul_block_all_dynamic(
    block_M,
    block_N,
    block_K,
    trans_A,
    trans_B,
    in_dtype,
    out_dtype,
    accum_dtype,
    num_stages,
    threads,
):
    M = tvm.te.var("m")
    N = tvm.te.var("n")
    K = tvm.te.var("k")

    A_shape = (K, M) if trans_A else (M, K)
    B_shape = (N, K) if trans_B else (K, N)
    A_shared_shape = (block_K, block_M) if trans_A else (block_M, block_K)
    B_shared_shape = (block_N, block_K) if trans_B else (block_K, block_N)

    @T.prim_func
309
    def main(A: T.Tensor(A_shape, in_dtype), B: T.Tensor(B_shape, in_dtype), C: T.Tensor(
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
        (M, N), out_dtype)):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):
            A_shared = T.alloc_shared(A_shared_shape, in_dtype)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype)
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
            T.clear(C_local)
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                if trans_A:
                    T.copy(A[k * block_K, by * block_M], A_shared)
                else:
                    T.copy(A[by * block_M, k * block_K], A_shared)
                if trans_B:
                    T.copy(B[bx * block_N, k * block_K], B_shared)
                else:
                    T.copy(B[k * block_K, bx * block_N], B_shared)
                T.gemm(A_shared, B_shared, C_local, trans_A, trans_B)
            T.copy(C_local, C[by * block_M, bx * block_N])

    return main


def assert_tl_matmul_block_all_dynamic_correctness(
    M,
    N,
    K,
    trans_A,
    trans_B,
    in_dtype,
    out_dtype,
    dtypeAccum,
    block_M,
    block_N,
    block_K,
    num_stages=3,
    num_threads=128,
):
    program = tl_matmul_block_all_dynamic(
        block_M,
        block_N,
        block_K,
        trans_A,
        trans_B,
        in_dtype,
        out_dtype,
        dtypeAccum,
        num_stages,
        num_threads,
    )
358
359
360

    kernel = tilelang.compile(program)

361
362
363
364
365
366
367
368
369
370
    if trans_A:
        A = torch.rand(K, M, device="cuda", dtype=getattr(torch, in_dtype))
    else:
        A = torch.rand(M, K, device="cuda", dtype=getattr(torch, in_dtype))
    if trans_B:
        B = torch.rand(N, K, device="cuda", dtype=getattr(torch, in_dtype))
    else:
        B = torch.rand(K, N, device="cuda", dtype=getattr(torch, in_dtype))
    C = torch.zeros(M, N, device="cuda", dtype=getattr(torch, out_dtype))

371
    kernel(A, B, C)
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389

    def ref_program(A, B):
        import torch

        if trans_A:
            A = A.T
        if trans_B:
            B = B.T
        C = torch.matmul(A.to(torch.float), B.to(torch.float))
        C = C.to(torch.__getattribute__(out_dtype))
        return C

    # Get Reference Result
    ref_c = ref_program(A, B)

    torch.testing.assert_close(C, ref_c, rtol=1e-2, atol=1e-2)


390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
def assert_tl_matmul_block_all_dynamic_correctness_with_pass_config(
    M,
    N,
    K,
    trans_A,
    trans_B,
    in_dtype,
    out_dtype,
    dtypeAccum,
    block_M,
    block_N,
    block_K,
    num_stages=3,
    num_threads=128,
    dynamic_alignment=8,
):
    program = tl_matmul_block_all_dynamic(
        block_M,
        block_N,
        block_K,
        trans_A,
        trans_B,
        in_dtype,
        out_dtype,
        dtypeAccum,
        num_stages,
        num_threads,
    )
418
419
420
421
422
423
424
425
426
427
    pass_configs = {
        tilelang.PassConfigKey.TL_DISABLE_DYNAMIC_TAIL_SPLIT: dynamic_alignment != 0,
        tilelang.PassConfigKey.TL_DYNAMIC_ALIGNMENT: dynamic_alignment
    }
    if M % 64 == 0 or N % 64 == 0 or K % 64 != 0:
        # workaround for hopper tma lower pass
        pass_configs[tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER] = True
        pass_configs[tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED] = True

    kernel = tilelang.compile(program, pass_configs=pass_configs)
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457

    if trans_A:
        A = torch.rand(K, M, device="cuda", dtype=getattr(torch, in_dtype))
    else:
        A = torch.rand(M, K, device="cuda", dtype=getattr(torch, in_dtype))
    if trans_B:
        B = torch.rand(N, K, device="cuda", dtype=getattr(torch, in_dtype))
    else:
        B = torch.rand(K, N, device="cuda", dtype=getattr(torch, in_dtype))
    C = torch.zeros(M, N, device="cuda", dtype=getattr(torch, out_dtype))

    kernel(A, B, C)

    def ref_program(A, B):
        import torch

        if trans_A:
            A = A.T
        if trans_B:
            B = B.T
        C = torch.matmul(A.to(torch.float), B.to(torch.float))
        C = C.to(torch.__getattribute__(out_dtype))
        return C

    # Get Reference Result
    ref_c = ref_program(A, B)

    torch.testing.assert_close(C, ref_c, rtol=1e-2, atol=1e-2)


458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
def test_assert_tl_matmul_macro():
    assert_tl_matmul_macro_correctness(128, 128, 128, "float16", "float16", "float16")
    assert_tl_matmul_macro_correctness(66, 128, 128, "float16", "float16", "float16")
    assert_tl_matmul_macro_correctness(32, 128, 128, "float16", "float16", "float16")


def test_assert_tl_matmul_block():
    assert_tl_matmul_block_correctness(128, 128, 128, False, False, "float16", "float16", "float16",
                                       64, 64, 32)
    assert_tl_matmul_block_correctness(67, 128, 128, False, False, "float16", "float16", "float16",
                                       64, 64, 32)
    assert_tl_matmul_block_correctness(36, 128, 128, False, False, "float16", "float16", "float16",
                                       64, 64, 32)


def test_assert_tl_matmul_block_all_dynamic():
    assert_tl_matmul_block_all_dynamic_correctness(128, 128, 128, False, False, "float16",
                                                   "float16", "float16", 64, 64, 32)
    assert_tl_matmul_block_all_dynamic_correctness(67, 128, 128, False, False, "float16", "float16",
                                                   "float16", 64, 64, 32)
    assert_tl_matmul_block_all_dynamic_correctness(36, 128, 128, False, False, "float16", "float16",
                                                   "float16", 64, 64, 32)


482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
def test_assert_tl_matmul_block_all_dynamic_with_pass_config():
    assert_tl_matmul_block_all_dynamic_correctness_with_pass_config(
        128,
        128,
        128,
        False,
        False,
        "float16",
        "float16",
        "float16",
        64,
        64,
        32,
        dynamic_alignment=8)
    assert_tl_matmul_block_all_dynamic_correctness_with_pass_config(
        64,
        128,
        128,
        False,
        False,
        "float16",
        "float16",
        "float16",
        64,
        64,
        32,
        dynamic_alignment=8)
    assert_tl_matmul_block_all_dynamic_correctness_with_pass_config(
        64, 128, 60, False, False, "float16", "float16", "float16", 64, 64, 32, dynamic_alignment=4)
    # Tail split is enabled with dynamic alignment 0
    assert_tl_matmul_block_all_dynamic_correctness_with_pass_config(
        64, 128, 64, False, False, "float16", "float16", "float16", 64, 64, 32, dynamic_alignment=0)


516
if __name__ == "__main__":
517
518
    # tilelang.testing.main()
    assert_tl_matmul_macro_correctness(128, 128, 128, "float16", "float16", "float16")