example_retention_fwd.py 4.21 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import torch
import tilelang as tl
import tilelang.language as T
from tilelang.profiler import do_bench

import argparse


@tl.jit(out_idx=3, pass_configs={"tl.disable_tma_lower": True, "tl.disable_warp_specialized": True})
def chunk_retention_fwd_kernel(
    B,
    S,
    H,
    DK,
    DV,
    dtype: str = 'float16',
    scale: float = None,
) -> torch.Tensor:

    if scale is None:
        scale = DK**-0.5
    accum_dtype = 'float'

    chunk_size = 64
    BK = BV = 64  # Set to 128 can be faster, but has some numerical differences with FLA
    assert S % chunk_size == 0 and DK % BK == 0 and DV % BV == 0
    NK = tl.cdiv(DK, BK)
    NV = tl.cdiv(DV, BV)
    NT = tl.cdiv(S, chunk_size)

    @T.prim_func
    def chunk_retention_fwd(
            Q: T.Tensor([B, S, H, DK], dtype),  # type: ignore
            K: T.Tensor([B, S, H, DK], dtype),  # type: ignore
            V: T.Tensor([B, S, H, DV], dtype),  # type: ignore
36
            O: T.Tensor([NK, B, S, H, DV], dtype),  # type: ignore
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    ):
        with T.Kernel(NV, NK, B * H) as (i_v, i_k, i_bh):
            i_b = i_bh // H
            i_h = i_bh % H
            log_decay = T.alloc_var('float32')
            log_decay = T.log2(1 - T.exp2(-5. - 1. * i_h))  # Head-specific log decay

            q = T.alloc_shared([chunk_size, BK], dtype)
            k = T.alloc_shared([chunk_size, BK], dtype)
            v = T.alloc_shared([chunk_size, BV], dtype)
            h = T.alloc_fragment([BK, BV], accum_dtype)
            h_shared = T.alloc_shared([BK, BV], dtype)
            s = T.alloc_fragment([chunk_size, chunk_size], accum_dtype)
            s_shared = T.alloc_shared([chunk_size, chunk_size], dtype)
            o = T.alloc_fragment([chunk_size, BV], accum_dtype)
            T.clear(h)

            T.use_swizzle(10)

            for i in T.Pipelined(0, NT):
                for row, col in T.Parallel(chunk_size, BK):
                    q[row, col] = Q[i_b, i * chunk_size + row, i_h, i_k * BK + col] * scale
                T.copy(K[i_b, i * chunk_size:(i + 1) * chunk_size, i_h, i_k * BK:(i_k + 1) * BK], k)
                T.copy(V[i_b, i * chunk_size:(i + 1) * chunk_size, i_h, i_v * BV:(i_v + 1) * BV], v)

                T.gemm(q, k, s, clear_accum=True, transpose_B=True)
                for row, col in T.Parallel(chunk_size, chunk_size):
                    s_shared[row,
                             col] = T.if_then_else(row >= col, s[row, col] * T.exp2(
                                 (row - col) * log_decay), 0)

                T.copy(h, h_shared)
                T.gemm(q, h_shared, o, clear_accum=True)
                for row, col in T.Parallel(chunk_size, BV):
                    o[row, col] = T.exp2((row + 1) * log_decay) * o[row, col]
                T.gemm(s_shared, v, o)

                for row, col in T.Parallel(chunk_size, BV):
                    v[row, col] = v[row, col] * T.exp2((chunk_size - row - 1) * log_decay)
                for row, col in T.Parallel(BK, BV):
                    h[row, col] = T.exp2(chunk_size * log_decay) * h[row, col]
                T.copy(
                    o, O[i_k, i_b, i * chunk_size:(i + 1) * chunk_size, i_h,
                         i_v * BV:(i_v + 1) * BV])
                T.gemm(k, v, h, transpose_A=True)

    return chunk_retention_fwd


def postprocess(o):
    return o if o.size(0) == 1 else o.sum(0)


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--B', type=int, default=8, help='Batch size')
    parser.add_argument('--S', type=int, default=4096, help='Seq len')
    parser.add_argument('--H', type=int, default=32, help='Num heads')
    parser.add_argument('--D', type=int, default=128, help='Head dim')
    args = parser.parse_args()
    B, S, H, D = args.B, args.S, args.H, args.D
    total_flops = 2.0 * B * S * S * H * D  # causal

    q = torch.randn((B, S, H, D), device='cuda', dtype=torch.float16)
    k = torch.randn((B, S, H, D), device='cuda', dtype=torch.float16)
    v = torch.randn((B, S, H, D), device='cuda', dtype=torch.float16)

    kernel = chunk_retention_fwd_kernel(B, S, H, D, D)

    t = do_bench(lambda: postprocess(kernel(q, k, v)), warmup=25, rep=100)
    print(f'Tilelang latency: {t:.3f} ms')
    print(f'Tilelang TFLOPs: {total_flops/t * 1e-9}')


if __name__ == '__main__':
    main()