"vscode:/vscode.git/clone" did not exist on "49280e51ac3cec669b64544d0e18fcacbce434b0"
example_gqa_sink_bwd_bhsd.py 22.2 KB
Newer Older
1
2
3
4
5
6
7
# Adapted from tilelang/examples/flash_attention/example_gqa_bwd.py

import torch
import tilelang
from tilelang.profiler import do_bench
import tilelang.language as T
import argparse
8
from typing import Optional
9
10
11
12
13
14


def get_bwd_configs():
    sm_major, sm_minor = torch.cuda.get_device_capability()
    sm_version = sm_major * 10 + sm_minor
    if sm_version == 80:
15
        return 64, 32, 1, 128
16
    elif sm_version == 90:
17
        return 128, 32, 2, 256
18
19
20
21
22
    else:
        raise ValueError(f"Unsupported SM version: {sm_version}")


@tilelang.jit(
23
    out_idx=[3, 4], pass_configs={
24
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
25
    })
26
27
28
29
30
31
def flashattn_fwd(
        batch,
        heads,
        seq_len,
        dim,
        groups=1,
32
33
34
35
36
37
38
        window_size=None,  # None for full attention
        sm_scale=None,
        block_M=64,
        block_N=64,
        num_stages=1,
        threads=128,
        dtype: str = "float16"):
39
40
41
42

    if window_size is not None:
        assert window_size % block_N == 0, "window_size must be divisible by block_N"

43
44
45
46
    if sm_scale is None:
        sm_scale = (1.0 / dim)**0.5
    scale = sm_scale * 1.44269504  # log2(e)

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    head_kv = heads // groups
    q_shape = [batch, heads, seq_len, dim]
    kv_shape = [batch, head_kv, seq_len, dim]
    accum_dtype = "float"

    @T.prim_func
    def flash_fwd(
            Q: T.Tensor(q_shape, dtype),  # type: ignore
            K: T.Tensor(kv_shape, dtype),  # type: ignore
            V: T.Tensor(kv_shape, dtype),  # type: ignore
            Output: T.Tensor(q_shape, dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            Sinks: T.Tensor([heads], dtype),  # type: ignore
    ):
        with T.Kernel(T.ceildiv(seq_len, block_M), heads, batch, threads=threads) as (bx, by, bz):
            Q_shared = T.alloc_shared([block_M, dim], dtype)
            K_shared = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_N, dim], dtype)
            acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
            acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
            scores_max = T.alloc_fragment([block_M], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
            scores_scale = T.alloc_fragment([block_M], accum_dtype)
            scores_sum = T.alloc_fragment([block_M], accum_dtype)
            logsum = T.alloc_fragment([block_M], accum_dtype)
            sinks = T.alloc_fragment([heads], dtype)

            T.annotate_layout({Q_shared: tilelang.layout.make_swizzled_layout(Q_shared)})
            T.copy(Q[bz, by, bx * block_M:(bx + 1) * block_M, :], Q_shared)
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))
            for i in T.Parallel(block_M):
                sinks[i] = Sinks[by]

            end = T.min(T.ceildiv(seq_len, block_N), T.ceildiv((bx + 1) * block_M, block_N))
84
85
            start = T.max(0,
                          (bx * block_M - window_size) // block_N) if window_size is not None else 0
86

87
            for k in T.Pipelined(start, end, num_stages=num_stages):
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
                T.copy(K[bz, by // groups, k * block_N:(k + 1) * block_N, :], K_shared)
                for i, j in T.Parallel(block_M, block_N):
                    q_idx = bx * block_M + i
                    k_idx = k * block_N + j
                    if window_size is not None:
                        acc_s[i, j] = T.if_then_else(q_idx >= k_idx and q_idx < k_idx + window_size,
                                                     0, -T.infinity(acc_s.dtype))
                    else:
                        acc_s[i, j] = T.if_then_else(q_idx >= k_idx, 0, -T.infinity(acc_s.dtype))
                T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)

                T.copy(V[bz, by // groups, k * block_N:(k + 1) * block_N, :], V_shared)
                T.copy(scores_max, scores_max_prev)
                T.reduce_max(acc_s, scores_max, dim=1, clear=False)
                # To do causal softmax, we need to set the scores_max to 0 if it is -inf
                # This process is called Check_inf in FlashAttention3 code, and it only need to be done
                # NOTE(wt): check_inf is necessary for sliding window attention.
                for i in T.Parallel(block_M):
                    if window_size is not None:
                        scores_max[i] = T.if_then_else(scores_max[i] == -T.infinity(accum_dtype), 0,
                                                       scores_max[i])
                    scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)

                for i, j in T.Parallel(block_M, dim):
                    acc_o[i, j] *= scores_scale[i]

                for i, j in T.Parallel(block_M, block_N):
                    acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)

                T.copy(acc_s, acc_s_cast)
                T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)

                T.reduce_sum(acc_s, scores_sum, dim=1)
                for i in T.Parallel(block_M):
                    logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]

            for i in T.Parallel(block_M):
                logsum[i] += T.exp2(sinks[i] * 1.44269504 -
                                    scores_max[i] * scale)  # The only change for attention sink
            for i, j in T.Parallel(block_M, dim):
                acc_o[i, j] /= logsum[i]
            T.copy(acc_o, Output[bz, by, bx * block_M:(bx + 1) * block_M, :])
            for i in T.Parallel(block_M):
                logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale
            T.copy(logsum, lse[bz, by, bx * block_M:(bx + 1) * block_M])

    return flash_fwd


@tilelang.jit(
138
    out_idx=[2], pass_configs={
139
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
140
    })
141
def flashattn_bwd_preprocess(batch, heads, seq_len, dim, dtype: str = "float16"):
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    accum_dtype = "float"
    shape = [batch, heads, seq_len, dim]
    blk = 32

    @T.prim_func
    def flash_bwd_prep(
            O: T.Tensor(shape, dtype),  # type: ignore
            dO: T.Tensor(shape, dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, blk), batch) as (bx, by, bz):
            o = T.alloc_fragment([blk, blk], dtype)
            do = T.alloc_fragment([blk, blk], dtype)
            acc = T.alloc_fragment([blk, blk], accum_dtype)
            delta = T.alloc_fragment([blk], accum_dtype)
            T.clear(acc)
            for k in range(T.ceildiv(dim, blk)):
                T.copy(O[bz, bx, by * blk:(by + 1) * blk, k * blk:(k + 1) * blk], o)
                T.copy(dO[bz, bx, by * blk:(by + 1) * blk, k * blk:(k + 1) * blk], do)
                for i, j in T.Parallel(blk, blk):
                    acc[i, j] += o[i, j] * do[i, j]
            T.reduce_sum(acc, delta, 1)
            T.copy(delta, Delta[bz, bx, by * blk:(by + 1) * blk])

    return flash_bwd_prep


def make_dq_layout(dQ):
    # atomicAdd can not be vectorized, so we need to reorder dq to match the 8x8 gemm fragment
    return T.Layout(dQ.shape,
                    lambda b, h, l, d: [b, h, l // 8, d // 8, (d % 2), 4 * (l % 8) + (d % 8) // 2])


@tilelang.jit(
176
    out_idx=[1], pass_configs={
177
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
178
    })
179
def flashattn_bwd_postprocess(batch, heads, seq_len, dim, dtype: str = "float16"):
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    accum_dtype = "float"
    shape = [batch, heads, seq_len, dim]
    blk = 64

    @T.prim_func
    def flash_bwd_post(
            dQ: T.Tensor(shape, accum_dtype),  # type: ignore
            dQ_out: T.Tensor(shape, dtype),  # type: ignore
    ):
        with T.Kernel(T.ceildiv(seq_len, blk), heads, batch, threads=128) as (bx, by, bz):
            T.annotate_layout({dQ: make_dq_layout(dQ)})
            T.copy(
                dQ[bz, by, bx * blk:(bx + 1) * blk, :],
                dQ_out[bz, by, bx * blk:(bx + 1) * blk, :],
            )

    return flash_bwd_post


199
200
201
@tilelang.jit(pass_configs={
    tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
})
202
203
204
205
206
207
208
209
210
211
def flashattn_bwd(batch,
                  heads,
                  seq_len,
                  dim,
                  groups,
                  window_size=None,
                  sm_scale=None,
                  dtype="float16"):  # None for full attention
    if sm_scale is None:
        sm_scale = (1.0 / dim)**0.5
212
    scale = sm_scale * 1.44269504  # log2(e)
213

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
    head_kv = heads // groups
    q_shape = [batch, heads, seq_len, dim]
    kv_shape = [batch, head_kv, seq_len, dim]
    accum_dtype = "float"

    block_M, block_N, num_stages, threads = get_bwd_configs()

    if window_size is not None:
        assert window_size % block_N == 0, "window_size must be divisible by block_N"

    @T.prim_func
    def flash_bwd(
            Q: T.Tensor(q_shape, dtype),  # type: ignore
            K: T.Tensor(kv_shape, dtype),  # type: ignore
            V: T.Tensor(kv_shape, dtype),  # type: ignore
            dO: T.Tensor(q_shape, dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            dQ: T.Tensor(q_shape, accum_dtype),  # type: ignore
233
234
            dK: T.Tensor(kv_shape, accum_dtype),  # type: ignore
            dV: T.Tensor(kv_shape, accum_dtype),  # type: ignore
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, block_M), batch, threads=threads) as (bx, by, bz):
            K_shared = T.alloc_shared([block_M, dim], dtype)
            dsT_shared = T.alloc_shared([block_M, block_N], dtype)
            q = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_M, dim], dtype)
            qkT = T.alloc_fragment([block_M, block_N], accum_dtype)
            dsT = T.alloc_fragment([block_M, block_N], accum_dtype)
            qkT_cast = T.alloc_fragment([block_M, block_N], dtype)
            dsT_cast = T.alloc_fragment([block_M, block_N], dtype)
            lse_shared = T.alloc_shared([block_N], accum_dtype)
            delta = T.alloc_shared([block_N], accum_dtype)
            do = T.alloc_shared([block_N, dim], dtype)
            dv = T.alloc_fragment([block_M, dim], accum_dtype)
            dk = T.alloc_fragment([block_M, dim], accum_dtype)
            dq = T.alloc_fragment([block_N, dim], accum_dtype)
251
252
            dv_shared = T.alloc_shared([block_M, dim], accum_dtype)
            dk_shared = T.alloc_shared([block_M, dim], accum_dtype)
253
254
255
256
257
258
259
260
261
262
263
264
265

            T.annotate_layout({
                dQ: make_dq_layout(dQ),
                K_shared: tilelang.layout.make_swizzled_layout(K_shared),
                dv_shared: tilelang.layout.make_swizzled_layout(dv_shared),
                dk_shared: tilelang.layout.make_swizzled_layout(dk_shared),
            })
            T.copy(K[bz, bx // groups, by * block_M:(by + 1) * block_M, :], K_shared)
            T.copy(V[bz, bx // groups, by * block_M:(by + 1) * block_M, :], V_shared)
            T.clear(dv)
            T.clear(dk)

            loop_st = T.floordiv(by * block_M, block_N)
266
267
268
269
270
            loop_ed = T.min(
                T.ceildiv((by + 1) * block_M + window_size, block_N), T.ceildiv(
                    seq_len, block_N)) if window_size is not None else T.ceildiv(seq_len, block_N)

            for k in T.Pipelined(loop_st, loop_ed, num_stages=num_stages):
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
                T.copy(Q[bz, bx, k * block_N:(k + 1) * block_N, :], q)
                T.clear(qkT)
                T.gemm(K_shared, q, qkT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                T.copy(lse[bz, bx, k * block_N:(k + 1) * block_N], lse_shared)
                for i, j in T.Parallel(block_M, block_N):
                    qkT[i, j] = T.exp2(qkT[i, j] * scale - lse_shared[j])
                for i, j in T.Parallel(block_M, block_N):
                    if window_size is not None:
                        qkT[i, j] = T.if_then_else(
                            by * block_M + i <= k * block_N + j and
                            by * block_M + i > k * block_N + j - window_size, qkT[i, j], 0)
                    else:
                        qkT[i, j] = T.if_then_else(by * block_M + i <= k * block_N + j, qkT[i, j],
                                                   0)
                T.copy(dO[bz, bx, k * block_N:(k + 1) * block_N, :], dst=do)
                T.clear(dsT)
                T.gemm(V_shared, do, dsT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                T.copy(qkT, qkT_cast)
289
                T.gemm(qkT_cast, do, dv, policy=T.GemmWarpPolicy.FullRow)
290
291
292
293
294
295
296
297
298
299

                T.copy(Delta[bz, bx, k * block_N:(k + 1) * block_N], delta)

                for i, j in T.Parallel(block_M, block_N):
                    dsT_cast[i, j] = qkT[i, j] * (dsT[i, j] - delta[j]) * sm_scale
                T.gemm(dsT_cast, q, dk, policy=T.GemmWarpPolicy.FullRow)

                T.copy(dsT_cast, dsT_shared)
                T.clear(dq)
                T.gemm(dsT_shared, K_shared, dq, transpose_A=True)
300
                T.atomic_add(dQ[bz, bx, k * block_N:(k + 1) * block_N, :], dq)
301

302
303
304
305
            T.copy(dv, dv_shared)
            T.atomic_add(dV[bz, bx // groups, by * block_M:(by + 1) * block_M, :], dv_shared)
            T.copy(dk, dk_shared)
            T.atomic_add(dK[bz, bx // groups, by * block_M:(by + 1) * block_M, :], dk_shared)
306
307
308
309
310

    return flash_bwd


@tilelang.jit(out_idx=-1)
311
def flashattn_bwd_dsink(batch, heads, seq_len, block=256, dtype: str = "float16"):
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
    accum_dtype = "float"
    shape = [batch, heads, seq_len]

    @T.prim_func
    def flash_bwd_dsink(
            Sinks: T.Tensor([heads], dtype),  # type: ignore
            Delta: T.Tensor(shape, accum_dtype),  # type: ignore
            lse: T.Tensor(shape, accum_dtype),  # type: ignore
            dsinks: T.Tensor(shape, dtype),  # type: ignore
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, block), batch, threads=256) as (bx, by, bz):
            sink = T.alloc_local([1], dtype)
            lse_fragment = T.alloc_fragment([block], accum_dtype)
            delta_fragment = T.alloc_fragment([block], accum_dtype)
            dsink_fragment = T.alloc_fragment([block], dtype)

            sink[0] = Sinks[bx]
            T.copy(lse[bz, bx, by * block:(by + 1) * block], lse_fragment)
            T.copy(Delta[bz, bx, by * block:(by + 1) * block], delta_fragment)
            for i in T.Parallel(block):
                dsink_fragment[i] = -T.exp2(Sinks[bx] * 1.44269504 -
                                            lse_fragment[i]) * delta_fragment[i]
            T.copy(dsink_fragment, dsinks[bz, bx, by * block:(by + 1) * block])

    return flash_bwd_dsink


class _attention(torch.autograd.Function):

    @staticmethod
    def forward(ctx, q, k, v, sinks, window_size, groups):
343
344
345
346
347
348
349

        def maybe_contiguous(x):
            if x.stride(-1) != 1:
                return x.contiguous()
            return x

        q, k, v, sinks = [maybe_contiguous(x) for x in (q, k, v, sinks)]
350
        BATCH, H, N_CTX, D_HEAD = q.shape
351
352
        dtype = "float16" if q.dtype == torch.float16 else "bfloat16"
        kernel = flashattn_fwd(BATCH, H, N_CTX, D_HEAD, groups, window_size, dtype=dtype)
353
354
355
356
357
358
359
360
361
362
363
        o, lse = kernel(q, k, v, sinks)
        ctx.save_for_backward(q, k, v, sinks, o, lse)
        ctx.window_size = window_size
        ctx.groups = groups
        return o

    @staticmethod
    def backward(ctx, do):
        q, k, v, sinks, o, lse = ctx.saved_tensors
        BATCH, H, N_CTX, D_HEAD = q.shape
        groups = ctx.groups
364
        dtype = "float16" if q.dtype == torch.float16 else "bfloat16"
365

366
367
        kernel_prep = flashattn_bwd_preprocess(BATCH, H, N_CTX, D_HEAD, dtype=dtype)
        kernel_post = flashattn_bwd_postprocess(BATCH, H, N_CTX, D_HEAD, dtype=dtype)
368
        delta = kernel_prep(o, do)
369
        kernel = flashattn_bwd(BATCH, H, N_CTX, D_HEAD, groups, ctx.window_size, dtype=dtype)
370
371
372
373
        q_shape = [BATCH, H, N_CTX, D_HEAD]
        head_kv = H // groups
        kv_shape = [BATCH, head_kv, N_CTX, D_HEAD]
        dq = torch.zeros(q_shape, dtype=torch.float32, device=q.device)  # acc for atomicAdd
374
375
        dk = torch.zeros(kv_shape, dtype=torch.float32, device=q.device)
        dv = torch.zeros(kv_shape, dtype=torch.float32, device=q.device)
376
377
378
        kernel(q, k, v, do, lse, delta, dq, dk, dv)
        dq = kernel_post(dq)

379
        kernel_dsink = flashattn_bwd_dsink(BATCH, H, N_CTX, dtype=dtype)
380
381
382
383
384
385
386
387
388
389
390
391
392
        dsinks = kernel_dsink(sinks, delta, lse).sum(0).sum(1)
        return dq, dk, dv, dsinks, None, None


attention = _attention.apply


# Adapted and optimized from
# https://github.com/openai/gpt-oss/blob/main/gpt_oss/triton/attention.py
def ref_program(query: torch.Tensor,
                key: torch.Tensor,
                value: torch.Tensor,
                sinks: torch.Tensor,
393
394
                sliding_window: Optional[int] = None,
                dtype: torch.dtype = torch.float16) -> torch.Tensor:
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

    key = key.transpose(1, 2).contiguous()
    value = value.transpose(1, 2).contiguous()
    batch_size, num_keys, num_key_value_heads, head_dim = key.shape
    query = query.transpose(1, 2).contiguous()
    query = query.view(batch_size, query.shape[1], num_key_value_heads, -1, head_dim)
    batch_size, num_queries, num_key_value_heads, num_key_value_groups, head_dim = query.shape

    start_q = num_keys - num_queries
    sm_scale: float = 1.0 / head_dim**0.5

    sinks = sinks.view(1, num_key_value_heads, num_key_value_groups, 1, 1).float()
    key = key.unsqueeze(3)
    value = value.unsqueeze(3)

    pos_keys = torch.arange(num_keys, device=query.device)
    pos_queries = torch.arange(num_queries, device=query.device) + start_q
    mask = pos_keys[None, :] > pos_queries[:, None]
    mask = mask.float().masked_fill(mask, float("-inf"))

    if sliding_window:
        too_old = pos_keys[None, :] < (pos_queries[:, None] - sliding_window + 1)
        mask.masked_fill_(too_old, float("-inf"))

    logits = torch.einsum("bqhmd,bkhmd->bhmqk", query.float(), key.float()) * sm_scale
    logits = logits + mask[None, None, None, :, :]

    logits_max = torch.max(logits, dim=-1, keepdim=True).values
    logits_or_sinks_max = torch.maximum(sinks, logits_max)
    sinks = torch.exp(sinks - logits_or_sinks_max)
    unnormalized_scores = torch.exp(logits - logits_or_sinks_max)
    normalizer = unnormalized_scores.sum(dim=-1, keepdim=True) + sinks
    scores = unnormalized_scores / normalizer

    output = torch.einsum("bhmqk,bkhmd->bqhmd", scores, value.float())

    output = output.reshape(batch_size, num_queries, num_key_value_heads * num_key_value_groups,
432
                            head_dim).to(dtype)
433
434
435
436
437
438
439
440
    return output.transpose(1, 2).contiguous()


def main(BATCH: int = 1,
         H: int = 8,
         N_CTX: int = 512,
         D_HEAD: int = 64,
         groups: int = 2,
441
         window_size: Optional[int] = None,
442
443
         dtype: str = "float16"):
    torch_dtype = {"float16": torch.float16, "bfloat16": torch.bfloat16}[dtype]
444
445
446
447
448
449
450
451
452
453
    if window_size is not None:
        print('Using sliding window attention.')
        assert window_size <= N_CTX
        flops_per_matmul = 2.0 * BATCH * H * min(
            window_size, N_CTX // 2) * N_CTX * D_HEAD  # just a rough estimation
    else:
        print('Using full attention.')
        flops_per_matmul = 2.0 * BATCH * H * N_CTX * N_CTX * D_HEAD * 0.5
    total_flops = 5 * flops_per_matmul

454
455
456
457
458
    Q = (torch.randn(BATCH, H, N_CTX, D_HEAD, dtype=torch_dtype, device="cuda").requires_grad_())
    K = torch.randn(
        BATCH, H // groups, N_CTX, D_HEAD, dtype=torch_dtype, device="cuda").requires_grad_()
    V = torch.randn_like(K).requires_grad_()
    sinks = torch.randn(H, dtype=torch_dtype, device="cuda").requires_grad_()
459
460
461
462
463
464
465
466
467
    dO = torch.randn_like(Q)

    O = attention(Q, K, V, sinks, window_size, groups)
    O.backward(dO, retain_graph=True)
    dQ, Q.grad = Q.grad.clone(), None
    dK, K.grad = K.grad.clone(), None
    dV, V.grad = V.grad.clone(), None
    dsinks, sinks.grad = sinks.grad.clone(), None

468
    O_ref = ref_program(Q, K, V, sinks, window_size, dtype=torch_dtype)
469
470
471
472
473
474
475
    O_ref.backward(dO, retain_graph=True)
    dQ_ref, Q.grad = Q.grad.clone(), None
    dK_ref, K.grad = K.grad.clone(), None
    dV_ref, V.grad = V.grad.clone(), None
    dsinks_ref, sinks.grad = sinks.grad.clone(), None

    # Checks
476
477
478
479
480
481
482
483
484
485
486
487
488
489
    rtol, atol = {
        "float16": (1e-2, 1e-2),
        "bfloat16": (2e-2, 2e-2),
    }[dtype]
    assert torch.allclose(O, O_ref, rtol=rtol, atol=atol), f'O max err: {(O-O_ref).abs().max()}'
    assert torch.allclose(
        dV, dV_ref, rtol=rtol, atol=atol), f'dV max err: {(dV-dV_ref).abs().max()}'
    assert torch.allclose(
        dK, dK_ref, rtol=rtol, atol=atol), f'dK max err: {(dK-dK_ref).abs().max()}'
    assert torch.allclose(
        dQ, dQ_ref, rtol=rtol, atol=atol), f'dq max err: {(dQ-dQ_ref).abs().max()}'
    assert torch.allclose(
        dsinks, dsinks_ref, rtol=rtol,
        atol=atol), f'dsinks max err: {(dsinks-dsinks_ref).abs().max()}'
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511

    print("All checks passed for tilelang kernels.✅")

    # Only benchmark backward here
    def torch_bwd():
        O_ref.backward(dO, retain_graph=True)

    def tl_bwd():
        O.backward(dO, retain_graph=True)

    latency = do_bench(torch_bwd, warmup=500)
    print("torch: {:.2f} ms".format(latency))
    print("torch: {:.2f} TFlops".format(total_flops / latency * 1e-9))
    latency = do_bench(tl_bwd, warmup=500)
    print("tilelang: {:.2f} ms".format(latency))
    print("tilelang: {:.2f} TFlops".format(total_flops / latency * 1e-9))


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=1, help='Batch size')
    parser.add_argument('--h', type=int, default=64, help='Number of heads')
512
    parser.add_argument('--n_ctx', type=int, default=4096, help='Context size')
513
514
515
516
517
518
519
    parser.add_argument('--d_head', type=int, default=128, help='Head dimension')
    parser.add_argument('--groups', type=int, default=8, help='Groups')
    parser.add_argument(
        '--window_size',
        type=int,
        default=None,
        help='window size (default: None, which means full attention)')
520
521
    parser.add_argument(
        '--dtype', type=str, default="float16", help="dtype, can be float16 or bfloat16")
522
    args = parser.parse_args()
523
    main(args.batch, args.h, args.n_ctx, args.d_head, args.groups, args.window_size, args.dtype)