storage_access.cc 14.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/*!
 * \file storage_access.cc
 */
#include "storage_access.h"

25
#include <tvm/arith/analyzer.h>
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#include <tvm/target/target_info.h>
#include <tvm/tir/op.h>

#include <string>
#include <utility>

#include "tir/transforms/ir_utils.h"

namespace tvm {
namespace tl {

using namespace tir;

void TileLangStorageAccessVisitor::VisitExpr_(const BufferLoadNode *op) {
  Var buf = op->buffer->data;
41
  buffer_data_to_buffer_.Set(GetRef<Var>(buf.get()), op->buffer);
42
43
  StorageScope scope = GetScope(buf);
  if (Enabled(buf.get(), scope)) {
44
    ICHECK(allow_append_) << GetRef<BufferLoad>(op) << " " << scope.to_string();
45
46
    AccessEntry e;
    e.threads = env_threads();
47
    e.thread_range = this->ComputeThreadRange(e.threads);
48
    e.buffer = buf;
49
    e.buffer_indices = op->indices;
50
51
52
53
54
55
56
57
58
    e.dtype = op->dtype.element_of();
    for (const auto &index : op->indices) {
      e.touched.push_back(arith::IntSet::Vector(index));
    }
    e.type = kRead;
    e.scope = scope;
    curr_stmt_.access.emplace_back(std::move(e));
  }
  // traverse child
59
  IRVisitorWithAnalyzer::VisitExpr_(op);
60
61
62
63
64
65
66
67
}

void TileLangStorageAccessVisitor::VisitStmt_(const BufferStoreNode *op) {
  allow_append_ = true;
  ICHECK_EQ(curr_stmt_.access.size(), 0U);
  curr_stmt_.stmt = op;

  Var buf = op->buffer->data;
68
  buffer_data_to_buffer_.Set(GetRef<Var>(buf.get()), op->buffer);
69
70
71
72
  StorageScope scope = GetScope(buf);
  if (Enabled(buf.get(), scope)) {
    AccessEntry e;
    e.threads = env_threads();
73
    e.thread_range = this->ComputeThreadRange(e.threads);
74
    e.buffer = buf;
75
    e.buffer_indices = op->indices;
76
77
78
79
80
81
82
83
84
    e.dtype = op->value.dtype().element_of();
    for (const auto &index : op->indices) {
      e.touched.push_back(arith::IntSet::Vector(index));
    }
    e.type = kWrite;
    e.scope = scope;
    curr_stmt_.access.emplace_back(std::move(e));
  }
  // traverse child
85
  IRVisitorWithAnalyzer::VisitStmt_(op);
86
87
88
89
90
91
92
93
94
95
96
  // push to the scope
  scope_.back().push_back(curr_stmt_);
  // clear access entry.
  curr_stmt_.access.clear();
  allow_append_ = false;
}

void TileLangStorageAccessVisitor::VisitStmt_(const EvaluateNode *op) {
  allow_append_ = true;
  ICHECK_EQ(curr_stmt_.access.size(), 0U);
  curr_stmt_.stmt = op;
97
  IRVisitorWithAnalyzer::VisitStmt_(op);
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
  // push to the scope
  if (curr_stmt_.access.size() != 0) {
    scope_.back().push_back(curr_stmt_);
    curr_stmt_.access.clear();
  }
  allow_append_ = false;
}

void TileLangStorageAccessVisitor::VisitStmt_(const LetStmtNode *op) {
  allow_append_ = true;
  ICHECK_EQ(curr_stmt_.access.size(), 0U);
  curr_stmt_.stmt = op;
  this->VisitExpr(op->value);
  // push to the scope
  scope_.back().push_back(curr_stmt_);
  // clear access entry.
  curr_stmt_.access.clear();
  allow_append_ = false;
  // traverse body block
  this->VisitStmt(op->body);
}

120
121
122
123
124
125
126
127
128
void TileLangStorageAccessVisitor::VisitStmt_(const BlockNode *op) {
  auto block = Downcast<Block>(op);
  for (const auto &buffer : block->alloc_buffers) {
    ICHECK(buffer->IsInstance<BufferNode>());
    buffer_data_to_buffer_.Set(buffer->data, buffer);
  }
  IRVisitorWithAnalyzer::VisitStmt_(op);
}

129
130
131
132
133
void TileLangStorageAccessVisitor::VisitStmt_(const AttrStmtNode *op) {
  if (op->attr_key == tvm::tir::attr::double_buffer_write) {
    ICHECK(double_buffer_write_ == nullptr);
    double_buffer_write_ = op->node.as<VarNode>();
    scope_.push_back(std::vector<StmtEntry>());
134
    IRVisitorWithAnalyzer::VisitStmt_(op);
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    StmtEntry s;
    s.stmt = op;
    s.access = Summarize(std::move(scope_.back()), nullptr);
    scope_.pop_back();
    if (!s.access.empty()) {
      for (AccessEntry &e : s.access) {
        if (e.type == kWrite && e.buffer.get() == double_buffer_write_) {
          e.double_buffer_write = true;
        }
      }
      scope_.back().emplace_back(std::move(s));
    }
    double_buffer_write_ = nullptr;
  } else if (op->attr_key == tvm::tir::attr::coproc_scope) {
    IterVar iv = Downcast<IterVar>(op->node);
    env_threads_.push_back(iv);
151
    IRVisitorWithAnalyzer::VisitStmt_(op);
152
153
154
155
    env_threads_.pop_back();
  } else if (op->attr_key == tvm::tir::attr::thread_extent) {
    IterVar iv = Downcast<IterVar>(op->node);
    env_threads_.push_back(iv);
156
157
158
159
    ICHECK_NE(iv->thread_tag.length(), 0U);
    analyzer_.Bind(
        iv->var, Range::FromMinExtent(IntImm(op->value->dtype, 0), op->value));

160
161
162
    if (!in_device_env_) {
      in_device_env_ = true;
      scope_.push_back(std::vector<StmtEntry>());
163
      IRVisitorWithAnalyzer::VisitStmt_(op);
164
165
166
167
168
      // no need to take the result as the thread barrier automatically syncs.
      Summarize(std::move(scope_.back()), nullptr);
      in_device_env_ = false;
      scope_.pop_back();
    } else {
169
      IRVisitorWithAnalyzer::VisitStmt_(op);
170
171
172
173
174
175
176
    }
    env_threads_.pop_back();
  } else if (op->attr_key == tvm::tir::attr::hand_threaded) {
    // skip this pass on blocks that were hand_threaded
    // this avoids control flow and read/write conflicts
    // between hand-threaded kernels and automatic threading
  } else {
177
    IRVisitorWithAnalyzer::VisitStmt_(op);
178
179
180
181
182
  }
}

void TileLangStorageAccessVisitor::VisitStmt_(const ForNode *op) {
  scope_.push_back(std::vector<StmtEntry>());
183
  IRVisitorWithAnalyzer::VisitStmt_(op);
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
  StmtEntry s;
  s.stmt = op;
  s.access = Summarize(std::move(scope_.back()), op);
  scope_.pop_back();
  if (s.access.size() != 0) {
    // relax the touched set to contain all ranges in the loop.
    std::unordered_map<const VarNode *, arith::IntSet> relax_map;
    relax_map[op->loop_var.get()] =
        arith::IntSet::FromRange(Range::FromMinExtent(op->min, op->extent));
    for (AccessEntry &e : s.access) {
      if (e.buffer.defined()) {
        ICHECK(e.touched.size());
        Array<arith::IntSet> new_touched;
        for (const auto &touched : e.touched) {
          new_touched.push_back(arith::EvalSet(touched, relax_map));
        }
        e.touched = std::move(new_touched);
      }
    }
  }
  if (!s.access.empty()) {
    scope_.back().emplace_back(std::move(s));
  }
}

bool IsThreadInvariant(const PrimExpr &cond) {
  if (auto call = cond.as<CallNode>()) {
    if (auto opt_call_op = call->op.as<Op>()) {
      auto call_op = opt_call_op.value();
      if (call_op.same_as(builtin::tvm_thread_invariant())) {
        return true;
      }
    }
  }
  return false;
}

void TileLangStorageAccessVisitor::VisitStmt_(const IfThenElseNode *op) {
  bool is_thread_invariant = IsThreadInvariant(op->condition);
  if (!is_thread_invariant) {
    ++condition_counter_;
  }
226
227

  allow_append_ = true;
228
  this->VisitExpr(op->condition);
229
230
  PrimExpr real_condition = ExtractRealCondition(op->condition);

231
232
233
  curr_stmt_.access.clear();
  allow_append_ = false;

234
  scope_.push_back(std::vector<StmtEntry>());
235
236
237
238
239
  {
    With<arith::ConstraintContext> constraint(&analyzer_, real_condition);
    this->VisitStmt(op->then_case);
  }

240
241
242
243
244
245
  StmtEntry s;
  s.stmt = op;
  s.access = Summarize(std::move(scope_.back()), nullptr);
  scope_.pop_back();
  if (op->else_case) {
    scope_.push_back(std::vector<StmtEntry>());
246
    {
247
248
      With<arith::ConstraintContext> constraint(
          &analyzer_, analyzer_.rewrite_simplify(Not(real_condition)));
249
250
      this->VisitStmt(op->else_case.value());
    }
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
    auto v = Summarize(std::move(scope_.back()), nullptr);
    scope_.pop_back();
    s.access.insert(s.access.end(), v.begin(), v.end());
  }
  scope_.back().emplace_back(std::move(s));
  if (!is_thread_invariant) {
    --condition_counter_;
  }
}

void TileLangStorageAccessVisitor::VisitStmt_(const WhileNode *op) {
  bool is_thread_invariant = IsThreadInvariant(op->condition);
  if (!is_thread_invariant) {
    ++condition_counter_;
  }
  this->VisitExpr(op->condition);
  scope_.push_back(std::vector<StmtEntry>());
  this->VisitStmt(op->body);
  StmtEntry s;
  s.stmt = op;
  s.access = Summarize(std::move(scope_.back()), nullptr);
  scope_.pop_back();
  scope_.back().emplace_back(std::move(s));
  if (!is_thread_invariant) {
    --condition_counter_;
  }
}

void TileLangStorageAccessVisitor::VisitExpr_(const CallNode *op) {
  if (op->op.same_as(builtin::address_of())) {
    ICHECK_EQ(op->args.size(), 1U);
282
283
284
285
    if (auto load = op->args[0].as<BufferLoadNode>()) {
      Buffer buffer = load->buffer;
      DataType dtype = buffer->dtype;
      const VarNode *buffer_var = buffer->data.as<VarNode>();
286
      buffer_data_to_buffer_.Set(GetRef<Var>(buffer_var), buffer);
287
      StorageScope scope = GetScope(GetRef<Var>(buffer_var));
288
289
290
291
292
293
294
      Array<Range> buffer_ranges;
      // from indices to buffer indices
      ICHECK(buffer->shape.size() == load->indices.size());
      for (size_t i = 0; i < buffer->shape.size(); ++i) {
        buffer_ranges.push_back(
            Range::FromMinExtent(load->indices[i], buffer->shape[i]));
      }
295
296
297
298
      if (Enabled(buffer_var, scope)) {
        ICHECK(allow_append_);
        AccessEntry e;
        e.threads = env_threads();
299
        e.thread_range = this->ComputeThreadRange(e.threads);
300
301
        e.dtype = dtype;
        e.buffer = Downcast<Var>(buffer->data);
302
        e.buffer_ranges = buffer_ranges;
303
304
305
        for (const auto &index : load->indices) {
          e.touched.push_back(arith::IntSet::Vector(index));
        }
306
        e.is_pointer_access = true;
307
308
309
        e.type = kRead;
        e.scope = scope;
        curr_stmt_.access.emplace_back(e);
310
      }
311
      IRVisitorWithAnalyzer::VisitExpr_(load);
312
    } else {
313
      IRVisitorWithAnalyzer::VisitExpr_(op);
314
315
316
317
    }
  } else if (op->op.same_as(builtin::tvm_access_ptr())) {
    ICHECK_EQ(op->args.size(), 5U);
    DataType dtype = op->args[0].dtype();
318
    const VarNode *buffer_var = op->args[1].as<VarNode>();
319
320
321
    PrimExpr offset = op->args[2];
    PrimExpr extent = op->args[3];
    const IntImmNode *flag = op->args[4].as<IntImmNode>();
322
    StorageScope scope = GetScope(GetRef<Var>(buffer_var));
323
    // The buffer scope.
324
    if (Enabled(buffer_var, scope)) {
325
      ICHECK(allow_append_);
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
      Array<Range> buffer_ranges;
      if (buffer_data_to_buffer_.find(GetRef<Var>(buffer_var)) ==
          buffer_data_to_buffer_.end()) {
        // cannot find buffer map, use the default buffer
        buffer_ranges = {Range::FromMinExtent(offset, extent)};
      } else {
        Buffer buffer = buffer_data_to_buffer_.at(GetRef<Var>(buffer_var));
        auto buffer_shape = buffer->shape;
        // convert 1d offset to multi-dimensional index
        auto linear_to_indices = [this](PrimExpr offset,
                                        const Array<PrimExpr> &shape) {
          Array<PrimExpr> indices;
          PrimExpr remaining = offset;
          for (size_t i = 0; i < shape.size(); ++i) {
            PrimExpr stride = make_const(DataType::Int(32), 1);
            for (size_t j = i + 1; j < shape.size(); ++j) {
              stride = stride * shape[j];
            }
            PrimExpr idx = FloorDiv(remaining, stride);
            remaining = FloorMod(remaining, stride);
            indices.push_back(analyzer_.Simplify(idx));
          }
          return indices;
        };
        Array<PrimExpr> start_indices = linear_to_indices(offset, buffer_shape);
        Array<PrimExpr> end_indices =
            linear_to_indices(offset + extent, buffer_shape);
        for (size_t i = 0; i < buffer_shape.size(); ++i) {
          buffer_ranges.push_back(Range::FromMinExtent(
              start_indices[i],
              analyzer_.Simplify(end_indices[i] - start_indices[i])));
        }
      }
359
360
      AccessEntry e;
      e.threads = env_threads();
361
      e.thread_range = this->ComputeThreadRange(e.threads);
362
      e.dtype = dtype;
363
364
365
      e.buffer = GetRef<Var>(buffer_var);
      e.buffer_ranges = buffer_ranges;
      e.is_pointer_access = true;
366
367
368
369
370
371
372
373
374
375
376
377
      e.touched = {
          arith::IntSet::FromRange(Range::FromMinExtent(offset, extent))};
      e.scope = scope;
      if (flag->value & 1) {
        e.type = kRead;
        curr_stmt_.access.emplace_back(e);
      }
      if (flag->value & 2) {
        e.type = kWrite;
        curr_stmt_.access.emplace_back(e);
      }
    }
378
    IRVisitorWithAnalyzer::VisitExpr_(op);
379
380
381
382
383
384
385
  } else if (op->op.same_as(builtin::tvm_storage_sync())) {
    ICHECK(allow_append_);
    const std::string &s = op->args[0].as<StringImmNode>()->value;
    if (s != "warp") {
      StorageScope scope = StorageScope::Create(s);
      AccessEntry e;
      e.threads = env_threads();
386
      e.thread_range = this->ComputeThreadRange(e.threads);
387
388
389
390
391
      e.type = kSync;
      e.scope = StorageScope::Create(s);
      curr_stmt_.access.emplace_back(std::move(e));
    }
  } else {
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
    IRVisitorWithAnalyzer::VisitExpr_(op);
  }
}

Map<Var, Range>
TileLangStorageAccessVisitor::ComputeThreadRange(Array<IterVar> threads) {
  Map<Var, Range> thread_range;
  for (const auto &th : threads) {
    auto thread_tag = th->thread_tag;
    if (thread_tag == "threadIdx.x" || thread_tag == "threadIdx.y" ||
        thread_tag == "threadIdx.z") {
      auto const_int_bound = analyzer_.const_int_bound(th->var);
      auto min_value = const_int_bound->min_value;
      auto max_value = const_int_bound->max_value;
      auto extent = max_value - min_value + 1;
      auto dtype = th->var.dtype();
      thread_range.Set(th->var, Range::FromMinExtent(IntImm(dtype, min_value),
                                                     IntImm(dtype, extent)));
    }
411
  }
412
  return thread_range;
413
414
415
416
417
418
419
420
421
422
423
}

StorageScope TileLangStorageAccessVisitor::GetScope(Var buffer_var) const {
  if (buffer_var->type_annotation.as<PointerTypeNode>()) {
    return StorageScope::Create(GetPtrStorageScope(buffer_var));
  }
  return StorageScope(); // global by default
}

} // namespace tl
} // namespace tvm