"docs/source/NAS/QuickStart.rst" did not exist on "c71dadbaff635dbf743bc2acbc812471d0c7c406"
example_gemm_autotune.py 8.36 KB
Newer Older
1
2
3
4
5
6
7
8
import argparse
import torch
import itertools
import tilelang as tl
import tilelang.language as T
from tilelang.autotuner import AutoTuner
from tilelang.carver.template import MatmulTemplate
from tilelang.carver.arch import CUDA
9
from tilelang.carver.arch import CDNA
10
11
12
13
14
15
16
17
18
from tilelang.carver.roller.rasterization import NoRasterization


def ref_program(A, B):
    return A @ B.T


def get_configs(M, N, K, with_roller=False, topk=20):
    if with_roller:
Gabriel Wu's avatar
Gabriel Wu committed
19
        arch = CDNA("cuda") if torch.version.hip is None else CUDA("hip")
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
        carve_template = MatmulTemplate(
            M=M,
            N=N,
            K=K,
            in_dtype="float16",
            out_dtype="float16",
            accum_dtype="float",
        ).with_arch(arch)

        func = carve_template.equivalent_function()
        assert func is not None, "Function is None"
        roller_hints = carve_template.recommend_hints(topk=topk)
        if roller_hints is None:
            raise ValueError("No Roller Hints Found for TensorCore Scheduling")
        configs = []
        for hint in roller_hints:
            config = {}
            block_m, block_n = hint.block
            warp_m, warp_n = hint.warp
            # block_rows, block_cols represents warp partitioning
            block_rows, block_cols = block_m // warp_m, block_n // warp_n
            config["block_M"] = block_m
            config["block_N"] = block_n
            config["block_K"] = hint.rstep[0]
            config["num_stages"] = hint.pipeline_stage if hint.pipeline_stage > 1 else 0
            config["thread_num"] = block_rows * block_cols * 32
            config["enable_rasteration"] = hint.rasterization_plan is not NoRasterization
            configs.append(config)
    else:
        block_M = [64, 128, 256]
        block_N = [64, 128, 256]
        block_K = [32, 64]
        num_stages = [0, 1, 2, 3]
        thread_num = [128, 256]
        enable_rasterization = [True, False]
        _configs = list(
            itertools.product(
                block_M,
                block_N,
                block_K,
                num_stages,
                thread_num,
                enable_rasterization,
            ))

        configs = [
            {
                "block_M": c[0],
                "block_N": c[1],
                "block_K": c[2],
                "num_stages": c[3],
                "thread_num": c[4],
                "enable_rasteration": c[5],  # keep param name for backward-compat
            } for c in _configs
        ]
    return configs


def get_best_config(M, N, K, with_roller=False):

    def kernel(
        block_M=None,
        block_N=None,
        block_K=None,
        num_stages=None,
        thread_num=None,
        enable_rasteration=None,
    ):
88
        dtype = "bfloat16"
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        accum_dtype = "float"

        @T.prim_func
        def main(
                A: T.Tensor((M, K), dtype),
                B: T.Tensor((N, K), dtype),
                C: T.Tensor((M, N), dtype),
        ):
            with T.Kernel(
                    T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=thread_num) as (bx, by):
                A_shared = T.alloc_shared((block_M, block_K), dtype)
                B_shared = T.alloc_shared((block_N, block_K), dtype)
                C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
                C_shared = T.alloc_shared((block_M, block_N), dtype)
                T.use_swizzle(panel_size=10, enable=enable_rasteration)
                T.clear(C_local)
                for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                    T.copy(A[by * block_M, k * block_K], A_shared)
                    T.copy(B[bx * block_N, k * block_K], B_shared)
                    T.gemm(
                        A_shared,
                        B_shared,
                        C_local,
                        transpose_B=True,
                    )
                T.copy(C_local, C_shared)
                T.copy(C_shared, C[by * block_M, bx * block_N])

        return main

    autotuner = AutoTuner.from_kernel(
        kernel=kernel, configs=get_configs(M, N, K, with_roller)).set_compile_args(
            out_idx=[-1],
122
123
            target="auto",
        ).set_profile_args(
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
            supply_type=tl.TensorSupplyType.Integer,
            ref_prog=ref_program,
            skip_check=False,
        )
    return autotuner.run(warmup=3, rep=20)


def get_heuristic_config() -> dict:
    # Get CUDA device properties
    if not torch.cuda.is_available():
        raise RuntimeError("CUDA is not available")
    device = torch.cuda.current_device()
    sm_major, sm_minor = torch.cuda.get_device_capability(device)
    sm_version = sm_major * 10 + sm_minor
    print(f"CUDA device capability: {sm_version}")
    if sm_version in {80}:
        return {
            "block_M": 128,
            "block_N": 256,
            "block_K": 32,
            "num_stages": 2,
            "thread_num": 128,
            "enable_rasteration": True
        }
    elif sm_version in {90}:
        return {
            "block_M": 128,
            "block_N": 256,
            "block_K": 64,
            "num_stages": 3,
            "thread_num": 256,
            "enable_rasteration": True
        }
    else:
        return {
            "block_M": 128,
            "block_N": 256,
            "block_K": 32,
            "num_stages": 0,
            "thread_num": 128,
            "enable_rasteration": True
        }


168
@tl.jit(out_idx=[-1])
169
170
171
172
173
174
175
176
177
178
179
180
181
def matmul(M,
           N,
           K,
           block_M,
           block_N,
           block_K,
           num_stages,
           thread_num,
           enable_rasteration,
           dtype="float16",
           accum_dtype="float"):

    @T.prim_func
182
    def gemm_autotune(
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
            A: T.Tensor((M, K), dtype),
            B: T.Tensor((N, K), dtype),
            C: T.Tensor((M, N), dtype),
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=thread_num) as (bx, by):
            A_shared = T.alloc_shared((block_M, block_K), dtype)
            B_shared = T.alloc_shared((block_N, block_K), dtype)
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
            C_shared = T.alloc_shared((block_M, block_N), dtype)
            T.use_swizzle(panel_size=10, enable=enable_rasteration)
            T.clear(C_local)
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                T.copy(A[by * block_M, k * block_K], A_shared)
                T.copy(B[bx * block_N, k * block_K], B_shared)
                T.gemm(
                    A_shared,
                    B_shared,
                    C_local,
                    transpose_B=True,
                )
            T.copy(C_local, C_shared)
            T.copy(C_shared, C[by * block_M, bx * block_N])

206
    return gemm_autotune
207
208


209
210
211
def main(m: int = 4096,
         n: int = 4096,
         k: int = 4096,
212
         use_autotune: bool = False,
213
         with_roller: bool = False):
214
    M, N, K = m, n, k
215
216
217
218
219
220
221
    use_autotune = True
    if use_autotune:
        result = get_best_config(M, N, K, with_roller)
        print(result.config)
        kernel = result.kernel
    else:
        config = get_heuristic_config()
222
        kernel = matmul(M, N, K, **config)
223
224
225
226
227
228
229
230
231
232

    # benchmark
    profiler = kernel.get_profiler(tensor_supply_type=tl.TensorSupplyType.Auto)
    tilelang_latency = profiler.do_bench()
    ref_latency = profiler.do_bench(ref_program)
    profiler.assert_allclose(ref_program, atol=1e-2, rtol=1e-2)
    print(f"TileLang latency: {tilelang_latency}")
    print(f"Ref latency: {ref_latency}")
    print(f"TileLang TFlops: {2 * M * N * K / tilelang_latency * 1e-9}")
    print(f"Ref TFlops: {2 * M * N * K / ref_latency * 1e-9}")
233
234
235
236


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Autotuned MatMul Benchmark")
237
238
239
    parser.add_argument("--m", type=int, default=4096, help="Matrix dimension M")
    parser.add_argument("--n", type=int, default=4096, help="Matrix dimension N")
    parser.add_argument("--k", type=int, default=4096, help="Matrix dimension K")
240
241
242
243
244
245
246
247
    parser.add_argument(
        "--use_autotune",
        action="store_true",
        default=False,
        help="Whether to use autotune for matmul configs")
    parser.add_argument(
        "--with_roller",
        action="store_true",
248
        default=False,
249
250
251
        help="Whether to enable BitBLAS roller for search space")
    args = parser.parse_args()
    main(args.m, args.n, args.k, args.use_autotune, args.with_roller)