test_tilelang_language_frontend_v2.py 13.6 KB
Newer Older
1
2
3
4
5
import tilelang
import tilelang.language as T
import torch
import tilelang.testing
import tvm
6
7
from tvm.script.ir_builder.base import IRBuilderFrame
from tvm.tir.expr import IntImm, Var
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147


def test_argument():

    @T.prim_func
    def test_argument(
        t_1: T.bool,
        t_2: T.short,
        t_3: T.int,
        t_4: T.long,
        t_5: T.half,
        t_6: T.float,
        t_7: T.long,
        t_8: T.int8,
        t_9: T.int16,
        t_10: T.int32,
        t_11: T.int64,
        t_12: T.uint8,
        t_13: T.uint16,
        t_14: T.uint32,
        t_15: T.uint64,
        t_16: T.float8_e4m3fn,
        t_17: T.float8_e4m3fnuz,
        t_18: T.float8_e5m2,
        t_19: T.float8_e5m2fnuz,
        t_20: T.float8_e8m0fnu,
        t_21: T.float16,
        t_22: T.bfloat16,
        t_23: T.float32,
        t_24: T.float64,
    ):
        pass


def test_expr():
    from tilelang.language.v2.dtypes import _all_dtypes
    errors = []
    for name in _all_dtypes:
        dtype = getattr(T, name)
        assert isinstance(dtype, tvm.DataType), f"{dtype} is not tvm.DataType"
        try:
            dtype(1.0)
            dtype()
        except TypeError:
            pass
        except Exception:
            errors.append(name)
    assert not errors


# def test_var_decl_sugar():

#     @T.prim_func
#     def test_var_decl_sugar():
#         with T.Kernel(128, 128) as (bx, by):
#             var_1: T.bool = 1.0
#             var_2: T.short = 1.0
#             var_3: T.int = 1.0
#             var_4: T.long = 1.0
#             var_5: T.half = 1.0
#             var_6: T.float = 1.0
#             var_7: T.long = 1.0
#             var_8: T.int8 = 1.0
#             var_9: T.int16 = 1.0
#             var_10: T.int32 = 1.0
#             var_11: T.int64 = 1.0
#             var_12: T.uint8 = 1.0
#             var_13: T.uint16 = 1.0
#             var_14: T.uint32 = 1.0
#             var_15: T.uint64 = 1.0
#             var_16: T.float8_e4m3fn = 1.0
#             var_17: T.float8_e4m3fnuz = 1.0
#             var_18: T.float8_e5m2 = 1.0
#             var_19: T.float8_e5m2fnuz = 1.0
#             var_20: T.float8_e8m0fnu = 1.0
#             var_21: T.float16 = 1.0
#             var_22: T.bfloat16 = 1.0
#             var_23: T.float32 = 1.0
#             var_24: T.float64 = 1.0
#             var_1: T.bool = var_1
#             var_2: T.short = var_2
#             var_3: T.int = var_3
#             var_4: T.long = var_4
#             var_5: T.half = var_5
#             var_6: T.float = var_6
#             var_7: T.long = var_7
#             var_8: T.int8 = var_8
#             var_9: T.int16 = var_9
#             var_10: T.int32 = var_10
#             var_11: T.int64 = var_11
#             var_12: T.uint8 = var_12
#             var_13: T.uint16 = var_13
#             var_14: T.uint32 = var_14
#             var_15: T.uint64 = var_15
#             var_16: T.float8_e4m3fn = var_16
#             var_17: T.float8_e4m3fnuz = var_17
#             var_18: T.float8_e5m2 = var_18
#             var_19: T.float8_e5m2fnuz = var_19
#             var_20: T.float8_e8m0fnu = var_20
#             var_21: T.float16 = var_21
#             var_22: T.bfloat16 = var_22
#             var_23: T.float32 = var_23
#             var_24: T.float64 = var_24

#     s = test_var_decl_sugar.script()
#     for i in range(1, 25):
#         assert f'var_{i}_1' in s
#         assert 'tl.local_var_init' in s


def test_dtype_str_repr():

    @T.prim_func
    def test_str_repr():
        buf_1 = T.alloc_buffer((1,), dtype=T.bool, scope='shared')  # noqa F841
        buf_2 = T.alloc_buffer((1,), dtype=T.short, scope='shared')  # noqa F841
        buf_3 = T.alloc_buffer((1,), dtype=T.int, scope='shared')  # noqa F841
        buf_4 = T.alloc_buffer((1,), dtype=T.long, scope='shared')  # noqa F841
        buf_5 = T.alloc_buffer((1,), dtype=T.half, scope='shared')  # noqa F841
        buf_6 = T.alloc_buffer((1,), dtype=T.float, scope='shared')  # noqa F841
        buf_7 = T.alloc_buffer((1,), dtype=T.long, scope='shared')  # noqa F841
        buf_8 = T.alloc_buffer((1,), dtype=T.int8, scope='shared')  # noqa F841
        buf_9 = T.alloc_buffer((1,), dtype=T.int16, scope='shared')  # noqa F841
        buf_10 = T.alloc_buffer((1,), dtype=T.int32, scope='shared')  # noqa F841
        buf_11 = T.alloc_buffer((1,), dtype=T.int64, scope='shared')  # noqa F841
        buf_12 = T.alloc_buffer((1,), dtype=T.uint8, scope='shared')  # noqa F841
        buf_13 = T.alloc_buffer((1,), dtype=T.uint16, scope='shared')  # noqa F841
        buf_14 = T.alloc_buffer((1,), dtype=T.uint32, scope='shared')  # noqa F841
        buf_15 = T.alloc_buffer((1,), dtype=T.uint64, scope='shared')  # noqa F841
        buf_16 = T.alloc_buffer((1,), dtype=T.float8_e4m3fn, scope='shared')  # noqa F841
        buf_17 = T.alloc_buffer((1,), dtype=T.float8_e4m3fnuz, scope='shared')  # noqa F841
        buf_18 = T.alloc_buffer((1,), dtype=T.float8_e5m2, scope='shared')  # noqa F841
        buf_19 = T.alloc_buffer((1,), dtype=T.float8_e5m2fnuz, scope='shared')  # noqa F841
        buf_20 = T.alloc_buffer((1,), dtype=T.float8_e8m0fnu, scope='shared')  # noqa F841
        buf_21 = T.alloc_buffer((1,), dtype=T.float16, scope='shared')  # noqa F841
        buf_22 = T.alloc_buffer((1,), dtype=T.bfloat16, scope='shared')  # noqa F841
        buf_23 = T.alloc_buffer((1,), dtype=T.float32, scope='shared')  # noqa F841
        buf_24 = T.alloc_buffer((1,), dtype=T.float64, scope='shared')  # noqa F841


148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# not supported now
# def test_torch_eq():
#     dtypes = [
#         T.bool,
#         T.short,
#         T.int,
#         T.long,
#         T.half,
#         T.float,
#         T.long,
#         T.int8,
#         T.int16,
#         T.int32,
#         T.int64,
#         T.uint8,
#         T.uint16,
#         T.uint32,
#         T.uint64,
#         T.float8_e4m3fn,
#         T.float8_e4m3fnuz,
#         T.float8_e5m2,
#         T.float8_e5m2fnuz,
#         T.float8_e8m0fnu,
#         T.float16,
#         T.bfloat16,
#         T.float32,
#         T.float64,
#     ]
#     torch_dtypes = [
#         torch.bool,
#         torch.short,
#         torch.int,
#         torch.long,
#         torch.half,
#         torch.float,
#         torch.long,
#         torch.int8,
#         torch.int16,
#         torch.int32,
#         torch.int64,
#         torch.uint8,
#         torch.uint16,
#         torch.uint32,
#         torch.uint64,
#         torch.float8_e4m3fn,
#         torch.float8_e4m3fnuz,
#         torch.float8_e5m2,
#         torch.float8_e5m2fnuz,
#         torch.float8_e8m0fnu,
#         torch.float16,
#         torch.bfloat16,
#         torch.float32,
#         torch.float64,
#     ]
#     for a, b in zip(dtypes, torch_dtypes):
#         assert a == b, f"{a} and {b} are not equal"
#         assert T.dtype(b) == a, "dtype conversion error"
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278


def test_var_assign():

    @tilelang.jit(out_idx=-1)
    @T.prim_func
    def test_var_assign(A: T.Tensor((2,), T.int32)):
        with T.Kernel(1) as _:
            a: T.int32 = 1
            b: T.int32 = a
            a = 2
            d: T.int32 = a
            A[0] = b
            A[1] = d

    res = test_var_assign()()
    assert res[0] == 1
    assert res[1] == 2


def test_marco_return():

    @T.macro
    def macro_return_constant():
        return 0

    @T.macro
    def macro_return_frame(x):
        return T.alloc_var(T.float32, init=x)

    @T.macro
    def macro_return_expr(x):
        y = x + 1.0
        return y

    @T.macro
    def macro_apply_func(x, fn):
        return fn(x)

    def check(x, ty):
        assert isinstance(x, ty)

    @T.prim_func
    def test_macro_return():
        with T.Kernel(1) as _:
            a = macro_return_constant()
            b = macro_return_frame(3.0)
            c = macro_return_expr(4.0)
            d = macro_apply_func(5.0, lambda x: x * 2.0)
            check(a, (int, float, T.PrimExpr))
            check(b, T.PrimExpr)
            check(c, T.PrimExpr)
            check(d, T.PrimExpr)


def test_prim_func_generator():

    @T.prim_func(generator=True)
    def prim_func_gen(
            A=T.Tensor((128,), T.float32),  # noqa: B008
            B=T.Tensor((128,), T.float32),  # noqa: B008
    ):
        with T.Kernel(128) as (tx,):
            T.copy(A[tx], B[tx])

    prim_func_gen()

    @T.prim_func
    def foo() -> T.Tensor((128,), T.float32):
        pass

    assert isinstance(foo, T.PrimFunc)


279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
def test_serial_for_with_step():

    @tilelang.jit(out_idx=-1)
    @T.prim_func
    def test_stepped_serial(A: T.Tensor((10,), T.int32)):
        with T.Kernel(1) as _:
            for i in range(0, 10, 2):
                T.device_assert(0 <= i < 10 and i % 2 == 0, "i out of range")
                A[i] = 1.0
            for i in range(1, 10, 2):
                T.device_assert(1 <= i < 10 and i % 2 == 1, "i out of range")
                A[i] = 2.0

    ker = test_stepped_serial()
    res = ker()
    ref = torch.tensor([1, 2, 1, 2, 1, 2, 1, 2, 1, 2], dtype=torch.int32, device='cuda')
    assert torch.all(res == ref), f"Expected {ref}, but got {res}"

    @tilelang.jit(out_idx=-1)
    @T.prim_func
    def test_serial_step_neg(A: T.Tensor((10,), T.int32)):
        with T.Kernel(1) as _:
            for i in range(10, 0, -1):
                T.device_assert(0 < i <= 10, "i out of range")
                A[10 - i] = i

    ker = test_serial_step_neg()
    res = ker()
    ref = torch.tensor([10, 9, 8, 7, 6, 5, 4, 3, 2, 1], dtype=torch.int32, device='cuda')
    assert torch.all(res == ref), f"Expected {ref}, but got {res}"

    assert isinstance(T.serial(1, 10, 1), IRBuilderFrame)
    assert isinstance(T.serial(1, 10, IntImm('int32', 1)), IRBuilderFrame)
    assert not isinstance(T.serial(1, 10, Var('tmp', 'int32')), IRBuilderFrame)
    assert not isinstance(T.serial(10, -1, -1), IRBuilderFrame)


316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
def test_swap_logic():

    @tilelang.jit
    @T.prim_func
    def swap_var(A: T.Tensor[(2,), T.float32]):
        with T.Kernel(1, threads=1) as _:
            a = T.alloc_var(T.float32, A[0])
            b = T.alloc_var(T.float32, A[1])
            a, b = b, a
            A[0], A[1] = a, b

    @tilelang.jit
    @T.prim_func
    def swap_idx(A: T.Tensor[(2,), T.float32]):
        with T.Kernel(1, threads=1) as _:
            A[0], A[1] = A[1], A[0]

    k_swap_var = swap_var()
    data = torch.tensor([1.0, 2.0], dtype=torch.float32).cuda()
    k_swap_var(data)
    ref = torch.tensor([2.0, 1.0], dtype=torch.float32).cuda()
    torch.testing.assert_close(data, ref)

    k_swap_idx = swap_idx()
    data = torch.tensor([1.0, 2.0], dtype=torch.float32).cuda()
    k_swap_idx(data)
    ref = torch.tensor([2.0, 1.0], dtype=torch.float32).cuda()
    torch.testing.assert_close(data, ref)


346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
def test_while_loop():

    @tilelang.jit(out_idx=-1)
    @T.prim_func
    def test_while_loop(A: T.Tensor((1,), T.int32)):
        with T.Kernel(1) as _:
            i = T.alloc_var(T.int32, 0)
            sum = T.alloc_var(T.int32)
            while i < 10:
                sum += i
                i += 1
            A[0] = sum

    ker = test_while_loop()
    A = ker()
    assert A[0].item() == sum(range(10)), f"Expected {sum(range(10))}, but got {A[0].item()}"


364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
def test_var_macro():
    try:

        @T.macro
        def macro_with_var(x: T.Var):
            x = 1  # noqa: F841

        @T.prim_func
        def prim_call_macro():
            with T.Kernel(1):
                x = T.alloc_var(T.int32)
                macro_with_var(x)

        assert 'x[0] = 1' in prim_call_macro.script()
    finally:
        pass

    try:

        @T.macro
        def macro_with_var(x: T.Var):
            x = 1  # noqa: F841

        @T.prim_func
        def prim_call_macro():
            with T.Kernel(1):
                x = 1
                macro_with_var(x)

        raise RuntimeError("Expect to report an error, x should not be passed as T.Var")
    except ValueError:
        pass

397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
    try:

        @T.macro
        def macro_with_var(x: T.Ref):
            x = 1  # noqa: F841

        @T.prim_func
        def prim_call_macro():
            with T.Kernel(1):
                x = T.alloc_var(T.int32)
                macro_with_var(x)

        assert 'x[0] = 1' in prim_call_macro.script()
    finally:
        pass

    try:

        @T.macro
        def macro_with_var(x: T.Ref):
            x = 1  # noqa: F841

        @T.prim_func
        def prim_call_macro():
            with T.Kernel(1):
                x = 1
                macro_with_var(x)

        raise RuntimeError("Expect to report an error, x should not be passed as T.Var")
    except ValueError:
        pass

429

430
def test_frame_inside_macro():
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

    @tilelang.jit
    def get_sample_kernel():

        @T.macro
        def transform(x):
            return x + 1

        @T.prim_func
        def sample_kernel(
            num_blocks: T.int32,
            idx_out: T.Tensor[(32,), T.int32],
        ):
            with T.Kernel(num_blocks, threads=32) as block_idx:  # noqa: F841
                fragment = T.alloc_fragment(32, 'int32')
                T.copy(idx_out, fragment)

                for i in T.Parallel(32):
                    idx_out[i] = transform(fragment[i])

        return sample_kernel

    kernel = get_sample_kernel()  # noqa: F841


456
457
458
459
460
461
462
463
464
465
466
467
468
def test_buffer_slice_step():
    try:

        @T.prim_func
        def prim_buffer_slice_step(A: T.Buffer((10,), T.int32), B: T.Buffer((5,), T.int32)):
            with T.Kernel(1):
                B[0:5:2] = A[0:10:2]

        raise AssertionError("Expect to report an error, buffer slice with step is not supported")
    except RuntimeError:
        pass


469
470
471
472
473
474
475
476
477
478
479
480
481
def test_boolop():
    a = Var('a', 'int32')
    b = Var('b', 'int32')
    c = Var('c', 'int32')
    d = Var('d', 'int32')

    @T.macro
    def cond():
        return not (a < b and b < c and a * d < b * d) or b * d < c * d

    cond()


482
483
if __name__ == '__main__':
    tilelang.testing.main()