example_fusedmoe_torch.py 8.71 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import math
import torch
import torch.nn as nn
from typing import Dict, Tuple, Optional


# Reference code in PyTorch
class ExpertTorch(nn.Module):

    def __init__(self, config: Dict, d_expert: Optional[int] = None):
        super().__init__()
        self.config = config
        self.act_fn = nn.SiLU()
        self.d_hidden: int = config["d_hidden"]
        self.d_expert: int = config["d_expert"] if d_expert is None else d_expert

        self.W_gate = nn.Linear(self.d_hidden, self.d_expert, bias=False)
        self.W_up = nn.Linear(self.d_hidden, self.d_expert, bias=False)
        self.W_down = nn.Linear(self.d_expert, self.d_hidden, bias=False)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        gate = self.act_fn(self.W_gate(x))
        out = self.W_down(gate * self.W_up(x))
        return out


class MoEGateTorch(nn.Module):

    def __init__(self, config: Dict):
        super().__init__()
        self.top_k: int = config["n_experts_per_token"]
        self.num_experts: int = config["n_routed_experts"]
        self.d_hidden: int = config["d_hidden"]

        self.W_g = nn.Linear(self.d_hidden, self.num_experts, bias=False)

    def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        logits = self.W_g(x)
        scores = logits.softmax(dim=-1)
        topk_scores, topk_indices = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)

        return topk_indices, topk_scores


class MoETorch(nn.Module):

    def __init__(self, config: Dict):
        super().__init__()
        self.config = config
        self.experts = nn.ModuleList(
            [ExpertTorch(config) for _ in range(config["n_routed_experts"])])
        self.gating_network = MoEGateTorch(config)
        shared_expert_dim = config["d_expert"] * config["n_shared_experts"]
        self.shared_expert = ExpertTorch(config=config, d_expert=shared_expert_dim)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        shared_output = self.shared_expert(x)
        expert_indices, expert_scores = self.gating_network(x)
        batch_size, seq_len, hidden_dim = x.shape
        orig_shape = x.shape
        x_flat = x.view(-1, hidden_dim)
        flat_expert_indices = expert_indices.view(-1)
        flat_expert_weights = expert_scores.view(-1, 1)
        routed_output_flat = self.moe_infer(x_flat, flat_expert_indices, flat_expert_weights)

        routed_output = routed_output_flat.view(*orig_shape)
        return routed_output + shared_output

    @torch.no_grad()
    def moe_infer(self, x: torch.Tensor, flat_expert_indices: torch.Tensor,
                  flat_expert_weights: torch.Tensor) -> torch.Tensor:
        expert_cache = torch.zeros_like(x)
        # test_expert_cache = torch.zeros((x.shape[0] * self.config["n_experts_per_token"], self.config["d_hidden"]))
        # test_expert_tokens = torch.zeros((x.shape[0] * self.config["n_experts_per_token"], self.config["d_hidden"]))
        # test_expert_ups = torch.zeros((self.config["n_routed_experts"], self.config["d_hidden"], self.config["d_expert"]))
        # test_expert_tokens_num = torch.zeros((self.config["n_routed_experts"]))

        idxs = flat_expert_indices.argsort()
        counts = flat_expert_indices.bincount().cpu().numpy()
        tokens_per_expert = counts.cumsum()
        num_per_tok = self.config["n_experts_per_token"]
        token_idxs = idxs // num_per_tok
        for expert_id, end_idx in enumerate(tokens_per_expert):
            start_idx = 0 if expert_id == 0 else tokens_per_expert[expert_id - 1]
            if start_idx == end_idx:
                continue

            expert = self.experts[expert_id]
            exp_token_idxs = token_idxs[start_idx:end_idx]
            expert_tokens = x[exp_token_idxs]
            expert_out = expert(expert_tokens)

            expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
            expert_cache.scatter_reduce_(
                0, exp_token_idxs.view(-1, 1).repeat(1, x.shape[-1]), expert_out, reduce='sum')

        return expert_cache


def ref_kernel(data: Tuple[torch.Tensor, Dict, Dict]) -> torch.Tensor:
    """
    Reference implementation of DeepSeek-style Mixture of Experts using PyTorch.
    
    Args:
        data: Tuple of (input: torch.Tensor, weights: Dict[str, torch.Tensor], config: Dict)
            - input: Input tensor of shape [batch_size, seq_len, hidden_dim]
            - weights: Dictionary containing model weights
            - config: Dictionary containing model configuration parameters
            
    Returns:
        Tuple containing:
            - output: Processed tensor [batch_size, seq_len, d_model]
    """
    input_tensor, weights, config = data
    num_experts = config["n_routed_experts"]
    moe = MoETorch(config)

    # Fill in the given weights of the model
    moe.gating_network.W_g.weight = nn.Parameter(weights['router.weight'])

    for i in range(num_experts):
        gate_proj_weight = weights[f'experts.{i}.0.weight']
        up_proj_weight = weights[f'experts.{i}.1.weight']
        down_proj_weight = weights[f'experts.{i}.2.weight']

        # Transpose weights to match expected shape for nn.Linear
        moe.experts[i].W_gate.weight = nn.Parameter(gate_proj_weight.t())
        moe.experts[i].W_up.weight = nn.Parameter(up_proj_weight.t())
        moe.experts[i].W_down.weight = nn.Parameter(down_proj_weight.t())

    moe.shared_expert.W_gate.weight = nn.Parameter(weights['shared_experts.0.weight'].t())
    moe.shared_expert.W_up.weight = nn.Parameter(weights['shared_experts.1.weight'].t())
    moe.shared_expert.W_down.weight = nn.Parameter(weights['shared_experts.2.weight'].t())

    output = moe(input_tensor)

    return output


# Input generation for the reference code


def generate_input(dhidden: int, dexpert: int, nroutedexperts: int, nsharedexperts: int,
                   nexpertspertoken: int, bs: int, seqlen: int,
                   seed: int) -> Tuple[torch.Tensor, Dict, Dict]:

    # Really dumb but for now _ isn't parsing correctly.
    d_hidden = dhidden
    d_expert = dexpert
    n_routed_experts = nroutedexperts
    n_shared_experts = nsharedexperts
    n_experts_per_token = nexpertspertoken
    batch_size = bs
    seq_len = seqlen

    config = {
        "d_hidden": d_hidden,
        "d_expert": d_expert,
        "n_routed_experts": n_routed_experts,
        "n_shared_experts": n_shared_experts,
        "n_experts_per_token": n_experts_per_token,
        "batch_size": batch_size,
        "seq_len": seq_len,
    }

    gen = torch.Generator(device='cuda')
    gen.manual_seed(seed)

    num_experts = n_routed_experts
    expert_dim = d_expert
    weights = {}

    input_tensor = torch.randn((batch_size, seq_len, d_hidden),
                               device='cuda',
                               dtype=torch.float16,
                               generator=gen).contiguous()

    # Initialize router weights
    weights['router.weight'] = torch.randn(
        (num_experts, d_hidden), device="cuda", dtype=torch.float16,
        generator=gen) / math.sqrt(d_hidden)

    for i in range(num_experts):
        weights[f'experts.{i}.0.weight'] = torch.randn(
            (d_hidden, expert_dim), device='cuda', dtype=torch.float16,
            generator=gen) / math.sqrt(expert_dim)

        weights[f'experts.{i}.1.weight'] = torch.randn(
            (d_hidden, expert_dim), device='cuda', dtype=torch.float16,
            generator=gen) / math.sqrt(expert_dim)

        weights[f'experts.{i}.2.weight'] = torch.randn(
            (expert_dim, d_hidden), device='cuda', dtype=torch.float16,
            generator=gen) / math.sqrt(d_hidden)

    weights['shared_experts.0.weight'] = torch.randn(
        (d_hidden, expert_dim * n_shared_experts),
        device='cuda',
        dtype=torch.float16,
        generator=gen) / math.sqrt(expert_dim * n_shared_experts)
    weights['shared_experts.1.weight'] = torch.randn(
        (d_hidden, expert_dim * n_shared_experts),
        device='cuda',
        dtype=torch.float16,
        generator=gen) / math.sqrt(expert_dim * n_shared_experts)
    weights['shared_experts.2.weight'] = torch.randn((expert_dim * n_shared_experts, d_hidden),
                                                     device='cuda',
                                                     dtype=torch.float16,
                                                     generator=gen) / math.sqrt(d_hidden)

    return (input_tensor, weights, config)


def clone_data(data):
    """
    Recursively goes through data and clones all tensors.
    """
    if isinstance(data, tuple):
        return tuple(clone_data(x) for x in data)
    elif isinstance(data, list):
        return [clone_data(x) for x in data]
    elif isinstance(data, dict):
        return {k: clone_data(v) for k, v in data.items()}
    elif isinstance(data, torch.Tensor):
        return data.clone()
    else:
        return data