test_tilelang_language_cumsum.py 11.1 KB
Newer Older
1
2
3
4
5
6
from tilelang import tvm as tvm
import tilelang.testing
import tilelang as tl
import torch


7
def cumsum_smem_test(M, N, block_M, block_N, dim=0, reverse=False, dtype="float32"):
8
9
10
11
    import tilelang.language as T

    @T.prim_func
    def cumsum(
12
13
        A: T.Tensor((M, N), dtype),
        B: T.Tensor((M, N), dtype),
14
15
16
17
18
19
20
21
22
23
24
25
    ):
        # Initialize Kernel Context
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=256) as (bx, by):
            A_shared = T.alloc_shared((block_M, block_N), dtype)

            T.copy(A[by * block_M, bx * block_N], A_shared)
            T.cumsum(src=A_shared, dim=dim, reverse=reverse)
            T.copy(A_shared, B[by * block_M, bx * block_N])

    return cumsum


26
def cumsum_fragment_test(M, N, block_M, block_N, dim=0, reverse=False, dtype="float32"):
27
28
29
30
    import tilelang.language as T

    @T.prim_func
    def cumsum(
31
32
        A: T.Tensor((M, N), dtype),
        B: T.Tensor((M, N), dtype),
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    ):
        # Initialize Kernel Context
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=256) as (bx, by):
            A_shared = T.alloc_shared((block_M, block_N), dtype)
            A_fragment = T.alloc_fragment((block_M, block_N), dtype)

            T.copy(A[by * block_M, bx * block_N], A_shared)
            T.copy(A_shared, A_fragment)
            T.cumsum(src=A_fragment, dim=dim, reverse=reverse)
            T.copy(A_fragment, B[by * block_M, bx * block_N])

    return cumsum


47
def run_cumsum(M, N, block_M, block_N, dim=0, reverse=False, dtype="float32", scope="smem"):
48
49
50
51
52
    if scope == "smem":
        program = cumsum_smem_test(M, N, block_M, block_N, dim, reverse, dtype)
    elif scope == "fragment":
        program = cumsum_fragment_test(M, N, block_M, block_N, dim, reverse, dtype)
    jit_kernel = tl.compile(program, out_idx=-1)
53
54

    A = torch.randn(M, N, dtype=getattr(torch, dtype)).cuda()
55
56
57
58
59

    def ref_program(A):
        ref_b = torch.empty_like(A)
        for i in range(M // block_M):
            for j in range(N // block_N):
60
61
62
                ref_b[i * block_M : (i + 1) * block_M, j * block_N : (j + 1) * block_N] = A[
                    i * block_M : (i + 1) * block_M, j * block_N : (j + 1) * block_N
                ].cumsum(dim=dim)
63
                if reverse:
64
65
66
67
68
69
                    ref_b[i * block_M : (i + 1) * block_M, j * block_N : (j + 1) * block_N] = (
                        A[i * block_M : (i + 1) * block_M, j * block_N : (j + 1) * block_N]
                        .flip(dims=[dim])
                        .cumsum(dim=dim)
                        .flip(dims=[dim])
                    )
70
71
        return ref_b

72
73
74
    tilelang_res = jit_kernel(A)
    ref_res = ref_program(A)
    torch.testing.assert_close(tilelang_res, ref_res, atol=1e-3, rtol=1e-3)
75
76


77
78
79
80
81
def cumsum_smem_test_1d(N, block_N, reverse=False, dtype="float32"):
    import tilelang.language as T

    @T.prim_func
    def cumsum(
82
83
        A: T.Tensor((N,), dtype),
        B: T.Tensor((N,), dtype),
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    ):
        with T.Kernel(T.ceildiv(N, block_N), threads=block_N) as bx:
            A_shared = T.alloc_shared((block_N,), dtype)

            T.copy(A[bx * block_N], A_shared)
            T.cumsum(src=A_shared, dim=0, reverse=reverse)
            T.copy(A_shared, B[bx * block_N])

    return cumsum


def cumsum_fragment_test_1d(N, block_N, reverse=False, dtype="float32"):
    import tilelang.language as T

    @T.prim_func
    def cumsum(
100
101
        A: T.Tensor((N,), dtype),
        B: T.Tensor((N,), dtype),
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    ):
        with T.Kernel(T.ceildiv(N, block_N), threads=block_N) as bx:
            A_shared = T.alloc_shared((block_N,), dtype)
            A_fragment = T.alloc_fragment((block_N,), dtype)

            T.copy(A[bx * block_N], A_shared)
            T.copy(A_shared, A_fragment)
            T.cumsum(src=A_fragment, dim=0, reverse=reverse)
            T.copy(A_fragment, B[bx * block_N])

    return cumsum


def run_cumsum_1d(N, block_N, reverse=False, dtype="float32", scope="smem"):
    if scope == "smem":
        program = cumsum_smem_test_1d(N, block_N, reverse, dtype)
    elif scope == "fragment":
        program = cumsum_fragment_test_1d(N, block_N, reverse, dtype)
    else:
        raise ValueError(f"Unknown scope {scope}")

    jit_kernel = tl.compile(program, out_idx=-1)
    A = torch.randn(N, dtype=getattr(torch, dtype)).cuda()

    def ref_program(A):
        ref_b = torch.empty_like(A)
        num_blocks = (N + block_N - 1) // block_N
        for j in range(num_blocks):
            start = j * block_N
            end = min(start + block_N, N)
            chunk = A[start:end]
            if reverse:
                chunk = torch.flip(chunk, dims=[0])
            chunk = chunk.cumsum(dim=0)
            if reverse:
                chunk = torch.flip(chunk, dims=[0])
            ref_b[start:end] = chunk
        return ref_b

    tilelang_res = jit_kernel(A)
    ref_res = ref_program(A)
    torch.testing.assert_close(tilelang_res, ref_res, atol=1e-3, rtol=1e-3)


146
147
148
149
150
151
152
153
def test_cumsum_smem():
    # Test different sizes
    run_cumsum(1024, 1024, 128, 128)
    run_cumsum(1024, 1024, 128, 128, dim=1)
    run_cumsum(1024, 1024, 128, 128, dim=1, reverse=True)

    # Test different dtypes
    run_cumsum(256, 256, 128, 128, dtype="float32")
154
    run_cumsum(256, 256, 128, 128, dtype="float32")
155
156
157
158
159
160
161
162
163


def test_cumsum_fragment():
    run_cumsum(1024, 1024, 128, 128, scope="fragment")
    run_cumsum(1024, 1024, 128, 128, dim=1, scope="fragment")
    run_cumsum(1024, 1024, 128, 128, dim=1, reverse=True, scope="fragment")

    # Test different dtypes
    run_cumsum(256, 256, 128, 128, dtype="float32", scope="fragment")
164
    run_cumsum(256, 256, 128, 128, dtype="float32", scope="fragment")
165
166


167
168
169
170
171
172
173
174
175
176
def test_cumsum_smem_1d():
    run_cumsum_1d(1024, 128)
    run_cumsum_1d(1024, 128, reverse=True)


def test_cumsum_fragment_1d():
    run_cumsum_1d(1024, 128, scope="fragment")
    run_cumsum_1d(1024, 128, reverse=True, scope="fragment")


177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
def cumsum_region_test_1d(N, chunk_size, reverse=False, dtype="float32"):
    """Test cumsum with buffer region (slice) as input."""
    import tilelang.language as T

    @T.prim_func
    def cumsum_region(
        InputG_fragment: T.Tensor((N,), dtype),
        OutputG_fragment: T.Tensor((N,), dtype),
    ):
        with T.Kernel(T.ceildiv(N, chunk_size), threads=chunk_size) as bx:
            i = bx
            chunk_start = i * chunk_size
            # Copy region to shared memory first (cumsum only supports shared memory)
            A_shared = T.alloc_shared((chunk_size,), dtype)
            T.copy(InputG_fragment[chunk_start : chunk_start + chunk_size], A_shared)
            # Test cumsum with region input - in-place operation on shared memory
            # This demonstrates the feature: T.cumsum(region, dim=0)
            T.cumsum(src=A_shared, dim=0, reverse=reverse)
            # Copy result back to global memory
            T.copy(A_shared, OutputG_fragment[chunk_start : chunk_start + chunk_size])

    return cumsum_region


def run_cumsum_region_1d(N, chunk_size, reverse=False, dtype="float32"):
    """Run test for cumsum with region input."""
    program = cumsum_region_test_1d(N, chunk_size, reverse, dtype)
    jit_kernel = tl.compile(program, out_idx=-1)
    A = torch.randn(N, dtype=getattr(torch, dtype)).cuda()

    def ref_program(A):
        ref_b = torch.empty_like(A)
        num_blocks = (N + chunk_size - 1) // chunk_size
        for j in range(num_blocks):
            start = j * chunk_size
            end = min(start + chunk_size, N)
            chunk = A[start:end].clone()
            if reverse:
                chunk = torch.flip(chunk, dims=[0])
            chunk = chunk.cumsum(dim=0)
            if reverse:
                chunk = torch.flip(chunk, dims=[0])
            ref_b[start:end] = chunk
        return ref_b

    tilelang_res = jit_kernel(A)
    ref_res = ref_program(A)
    torch.testing.assert_close(tilelang_res, ref_res, atol=1e-3, rtol=1e-3)


def cumsum_region_test_2d(M, N, block_M, block_N, dim=0, reverse=False, dtype="float32"):
    """Test cumsum with buffer region (slice) as input in 2D."""
    import tilelang.language as T

    @T.prim_func
    def cumsum_region(
        InputG_fragment: T.Tensor((M, N), dtype),
        OutputG_fragment: T.Tensor((M, N), dtype),
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=256) as (bx, by):
            chunk_start_M = by * block_M
            chunk_start_N = bx * block_N
            # Copy region to shared memory first (cumsum only supports shared memory)
            A_shared = T.alloc_shared((block_M, block_N), dtype)
            T.copy(
                InputG_fragment[chunk_start_M : chunk_start_M + block_M, chunk_start_N : chunk_start_N + block_N],
                A_shared,
            )
            # Test cumsum with 2D region input - in-place operation on shared memory
            T.cumsum(src=A_shared, dim=dim, reverse=reverse)
            # Copy result back to global memory
            T.copy(
                A_shared,
                OutputG_fragment[chunk_start_M : chunk_start_M + block_M, chunk_start_N : chunk_start_N + block_N],
            )

    return cumsum_region


def run_cumsum_region_2d(M, N, block_M, block_N, dim=0, reverse=False, dtype="float32"):
    """Run test for cumsum with 2D region input."""
    program = cumsum_region_test_2d(M, N, block_M, block_N, dim, reverse, dtype)
    jit_kernel = tl.compile(program, out_idx=-1)
    A = torch.randn(M, N, dtype=getattr(torch, dtype)).cuda()

    def ref_program(A):
        ref_b = torch.empty_like(A)
        num_blocks_M = (M + block_M - 1) // block_M
        num_blocks_N = (N + block_N - 1) // block_N
        for i in range(num_blocks_M):
            for j in range(num_blocks_N):
                start_M = i * block_M
                end_M = min(start_M + block_M, M)
                start_N = j * block_N
                end_N = min(start_N + block_N, N)
                chunk = A[start_M:end_M, start_N:end_N].clone()
                if reverse:
                    chunk = torch.flip(chunk, dims=[dim])
                chunk = chunk.cumsum(dim=dim)
                if reverse:
                    chunk = torch.flip(chunk, dims=[dim])
                ref_b[start_M:end_M, start_N:end_N] = chunk
        return ref_b

    tilelang_res = jit_kernel(A)
    ref_res = ref_program(A)
    torch.testing.assert_close(tilelang_res, ref_res, atol=1e-3, rtol=1e-3)


def test_cumsum_region_1d():
    """Test cumsum with 1D region input."""
    # Test normal cumsum with region input
    run_cumsum_region_1d(1024, 128)
    # Test reverse cumsum with region input
    run_cumsum_region_1d(1024, 128, reverse=True)
    # Test with different chunk sizes
    run_cumsum_region_1d(512, 64)
    run_cumsum_region_1d(2048, 256)
    # Tail coverage (non-divisible size)
    run_cumsum_region_1d(1000, 128)


def test_cumsum_region_2d():
    """Test cumsum with 2D region input."""
    # Test 2D cumsum along dim 0
    run_cumsum_region_2d(1024, 1024, 128, 128, dim=0)
    # Test 2D cumsum along dim 1
    run_cumsum_region_2d(1024, 1024, 128, 128, dim=1)
    # Test reverse cumsum
    run_cumsum_region_2d(512, 512, 64, 64, dim=1, reverse=True)
    # Tail coverage (non-divisible size)
    run_cumsum_region_2d(1000, 1000, 128, 128, dim=1)


311
312
if __name__ == "__main__":
    tilelang.testing.main()