layout_inference.cc 18.5 KB
Newer Older
1
2
3
4
5
6
/*!
 * \file layout_inference.cc
 * \brief infer the fragment/shared memory layout
 */

#include <tvm/tir/builtin.h>
7
#include <tvm/tir/index_map.h>
8
9
10
11
12
13
14
15
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>
#include <tvm/tir/utils.h>

#include <queue>

#include "../op/parallel.h"
16
#include "arith/ir_mutator_with_analyzer.h"
17
#include "arith/ir_visitor_with_analyzer.h"
18
#include "common/loop_fusion_utils.h"
19
#include "common/loop_parallel_transform_utils.h"
20
21
#include "loop_partition.h"
#include "loop_vectorize.h"
22
23
#include "runtime/thread_storage_scope.h"
#include "tir/transforms/ir_utils.h"
24
25
26
27

namespace tvm {
namespace tl {

28
29
30
using namespace tir;

/*!
31
 * \brief collect the mapping from the buffer var to it allocated buffer
32
 */
33
class ThreadBindingCollector : public StmtExprVisitor {
34
35
public:
  void VisitStmt_(const AttrStmtNode *op) final {
36
37
38
39
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      thread_binding_[iv->var.get()] = iv;
    }
40
41
42
    StmtExprVisitor::VisitStmt_(op);
  }

43
44
  // The thread binding map
  std::unordered_map<const VarNode *, IterVar> thread_binding_;
45
46
};

47
48
using namespace tir;
using arith::IRMutatorWithAnalyzer;
49
using arith::IRVisitorWithAnalyzer;
50
51
52
53
54
55
56

struct LayoutInferenceResult {
  Map<Buffer, Layout> layout_map;
  Map<For, Fragment> for_map;
  Map<For, PrimExpr> predicate_map;
};

57
class BufferUseDefCollector : public IRVisitorWithAnalyzer {
58
public:
59
60
  BufferUseDefCollector(bool skip_thread_partition)
      : skip_thread_partition_(skip_thread_partition) {}
61
62

  LayoutInferenceResult Run() {
63
64
65
66
67
    // Basic consistency check: infer_list_ and thread_var_vec_ should have the
    // same size
    ICHECK_EQ(infer_list_.size(), thread_var_vec_.size())
        << "Size mismatch: infer_list_ and thread_var_vec_ must match in "
           "length.";
68
69
70
    ICHECK_EQ(thread_bounds_vec_.size(), infer_list_.size())
        << "Size mismatch: thread_bounds_vec_ and infer_list_ must match in "
           "length.";
71
72
73
74
75

    // If needed, you can also check that annotated_layout_map_ is not empty, or
    // anything else relevant to your setup.

    // Copy the annotated layout map to local variable
76
    Map<Buffer, Layout> layout_map = annotated_layout_map_;
77
    Map<Buffer, Layout> strict_layout_map;
78
79
    int num_infer = infer_list_.size();

80
    // Prepare BFS queue for iterative inference
81
82
    std::queue<int> q;
    std::vector<bool> in_queue(num_infer, true);
83
84
85
86
87
88
89
90
91
92
    for (int i = 0; i < num_infer; i++) {
      // Check that each infer_list_ entry is valid
      ICHECK(infer_list_[i] != nullptr)
          << "infer_list_[" << i
          << "] is null. The inference object is not allocated properly.";

      // Check that each thread_var_vec_ entry is defined
      if (!thread_var_vec_[i].defined() && skip_thread_partition_) {
        thread_var_vec_[i] = thread_var_;
      }
93
      q.push(i);
94
    }
95

96
97
    auto run_infer_step = [&](int cur_infer_id, InferLevel level,
                              bool update_queue) {
98
99
100
101
102
103
104
105
106
      // Range check for cur_infer_id
      ICHECK_GE(cur_infer_id, 0)
          << "cur_infer_id is negative, which is invalid.";
      ICHECK_LT(cur_infer_id, num_infer)
          << "cur_infer_id " << cur_infer_id << " is out of range, must be < "
          << num_infer << ".";

      // Make sure we can safely access infer_list_[cur_infer_id] and
      // thread_var_vec_[cur_infer_id]
107
      auto &next = infer_list_[cur_infer_id];
108
      auto iter_var = thread_var_vec_[cur_infer_id];
109
      auto thread_bounds = thread_bounds_vec_[cur_infer_id];
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
      // Double-check that 'next' is valid
      ICHECK(next != nullptr) << "infer_list_[" << cur_infer_id
                              << "] is null inside run_infer_step.";

      // Check iter_var->dom and dom->extent
      ICHECK(iter_var.defined())
          << "thread_var_vec_[" << cur_infer_id << "] is not defined.";
      ICHECK(iter_var->dom.defined())
          << "iter_var->dom is not defined for infer_list_[" << cur_infer_id
          << "].";
      ICHECK(iter_var->dom->extent.defined())
          << "iter_var->dom->extent is not defined for infer_list_["
          << cur_infer_id << "].";

      const int64_t *extent_ptr = as_const_int(iter_var->dom->extent);
      ICHECK(extent_ptr != nullptr)
          << "iter_var->dom->extent is not a constant integer, which is "
             "required for layout inference.";

      // Run InferLayout
130
      auto updates = next->InferLayout(
131
          LayoutInferArgs{target_, thread_bounds, layout_map}, level);
132
      // Process the returned updates
133
      for (const auto &[buffer, layout] : updates) {
134
135
136
137
        // Basic validity checks
        ICHECK(buffer.defined()) << "InferLayout returned an undefined buffer.";
        ICHECK(layout.defined()) << "InferLayout returned an undefined layout.";

138
        if (layout_map.count(buffer)) {
139
140
          // If replicate size of this buffer is greater than the old one
          if (buffer.scope() == "local.fragment" &&
141
142
              level != InferLevel::kStrict &&
              !strict_layout_map.count(buffer)) {
143
144
145
146
147
148
149
150
151
152
153
154
            const FragmentNode *dst_layout = layout.as<Fragment>().get();
            const FragmentNode *src_layout =
                layout_map[buffer].as<Fragment>().get();
            if (as_const_int(dst_layout->ReplicateExtent()) &&
                as_const_int(src_layout->ReplicateExtent()) &&
                (*as_const_int(dst_layout->ReplicateExtent()) >
                 *as_const_int(src_layout->ReplicateExtent()))) {
              // update map
              layout_map.Set(buffer, layout);
              continue;
            }
          }
155
          // If already in map, ensure they are structurally equal
156
          ICHECK(StructuralEqual()(layout, layout_map[buffer]))
157
              << "Get different layout for " << buffer
158
159
              << "\n current layout: " << layout->DebugOutput()
              << "\n previous layout: " << layout_map[buffer]->DebugOutput();
160
        } else {
161
          // Otherwise, update map
162
          layout_map.Set(buffer, layout);
163
164
          if (!update_queue)
            continue;
165
166

          // Check if buffer exists in use_list_
167
          if (!use_list_.count(buffer)) {
168
169
170
171
            LOG(WARNING) << "Layout inference failed for buffer " << buffer
                         << ". "
                         << "The buffer cannot be inferred with current layout "
                            "inference rules.";
172
173
            continue;
          }
174
175

          // Push back into BFS queue
176
          for (int idx : use_list_[buffer]) {
177
178
179
180
181
182
            ICHECK_GE(idx, 0) << "Index in use_list_ for buffer " << buffer
                              << " is negative.";
            ICHECK_LT(idx, num_infer)
                << "Index in use_list_ for buffer " << buffer
                << " out of range: " << idx << " >= " << num_infer << ".";

183
184
185
186
187
188
189
190
            if (!in_queue[idx] && idx != cur_infer_id) {
              in_queue[idx] = true;
              q.push(idx);
            }
          }
        }
      }
    };
191

192
193
194
195
    auto finish_infer_queue = [&]() {
      while (!q.empty()) {
        int cur_infer_id = q.front();
        q.pop();
196
197
198
199
        // Range check again, just to be safe
        ICHECK_GE(cur_infer_id, 0);
        ICHECK_LT(cur_infer_id, num_infer);

200
201
202
203
204
        in_queue[cur_infer_id] = false;
        run_infer_step(cur_infer_id, InferLevel::kCommon, true);
      }
    };

205
    // step 1: infer strict layout
206
207
208
209
    for (int i = 0; i < num_infer; i++) {
      run_infer_step(i, InferLevel::kStrict, false);
    }

210
211
212
213
    for (const auto &[buffer, layout] : layout_map) {
      strict_layout_map.Set(buffer, layout);
    }

214
    // step 2: infer common layout with BFS
215
    finish_infer_queue();
216

217
    // step 3: relax constraints to free and re-run
218
219
220
221
    for (int i = 0; i < num_infer; i++) {
      run_infer_step(i, InferLevel::kFree, true);
      finish_infer_queue();
    }
222
    // Check that all local.fragment buffers have inferred layouts
223
    for (const auto &[buffer, _] : use_list_) {
224
225
226
227
228
      if (buffer.scope() == "local.fragment") {
        ICHECK_NE(layout_map.count(buffer), 0)
            << "The layout for fragment " << buffer
            << " can not be inferred correctly.";
      }
229
230
    }

231
    // Collect layout info for For nodes
232
233
    Map<For, Fragment> for_map;
    Map<For, PrimExpr> predicate_map;
234
235
236
237
238
239
    ICHECK(infer_list_.size() == thread_var_vec_.size())
        << "infer_list_ and thread_var_vec_ size mismatch";
    for (int i = 0; i < infer_list_.size(); i++) {
      std::unique_ptr<Operator> base_infer = std::move(infer_list_[i]);
      auto thread_var = thread_var_vec_[i];

240
241
242
      // Check if base_infer is valid
      ICHECK(base_infer != nullptr) << "Null pointer encountered in "
                                       "infer_list_ while collecting for_map.";
243
      if (auto for_infer = dynamic_cast<ParallelOp *>(base_infer.get())) {
244
        // Check that the loop layout is defined
245
        ICHECK(for_infer->GetLoopLayout().defined())
246
            << "The Layout for Parallel for cannot be inferred correctly:\n"
247
248
            << for_infer->GetRoot();
        for_map.Set(for_infer->GetRoot(), for_infer->GetLoopLayout());
249
        // thread_var_ should be defined if we rely on it
250
251
        ICHECK(thread_var.defined())
            << "thread_var is not defined. Cannot retrieve predicate.";
252

253
        if (auto predicate = for_infer->GetPredicate(thread_var->var)) {
254
          predicate_map.Set(for_infer->GetRoot(), predicate.value());
255
        }
256
257
258
259
260
261
      }
    }

    return {layout_map, for_map, predicate_map};
  }

262
263
  void Collect(const PrimFunc &f) {
    for (const auto &[_, buffer] : f->buffer_map) {
264
265
266
      buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    auto target = f->GetAttr<Target>(tvm::attr::kTarget);
267
268
    ICHECK(target.defined())
        << "Layout_Inference: Require the target attribute";
269
270
271
272
    target_ = target.value();
    this->operator()(f->body);
  }

273
274
private:
  void VisitExpr_(const CallNode *op) final {
275
    IRVisitorWithAnalyzer::VisitExpr_(op);
276
    // Do not analysis the call node to the global function.
277
278
    if (op->op.as<GlobalVarNode>())
      return;
279
280
281

    auto p = ParseOperator(GetRef<Call>(op), buffer_data_to_buffer_);
    if (p != nullptr) {
282
      for (const auto &arg : op->args) {
283
284
285
286
287
288
        if (auto buffer = getBufferFromAccessPtr(arg)) {
          addToUseList(buffer.value());
        }
      }
      infer_list_.push_back(std::move(p));
      thread_var_vec_.push_back(thread_var_);
289
290
291
292
      if (analyzer_.const_int_bound.IsBound(thread_var_->var)) {
        auto const_int_bound = analyzer_.const_int_bound(thread_var_);
        auto min_value = const_int_bound->min_value;
        auto max_value = const_int_bound->max_value;
293
        auto extent = max_value - min_value + 1;
294
295
        auto dtype = thread_var_->var.dtype();
        thread_bounds_vec_.push_back(Range::FromMinExtent(
296
            IntImm(dtype, min_value), IntImm(dtype, extent)));
297
298
299
      } else {
        thread_bounds_vec_.push_back(Range::FromMinExtent(0, 1));
      }
300
301
302
    }
  }

303
  Optional<Buffer> getBufferFromAccessPtr(const PrimExpr &expr) {
304
305
306
307
308
309
310
311
    auto call = expr.as<CallNode>();
    if (call && call->op.same_as(builtin::tvm_access_ptr())) {
      auto var = call->args[1].as<Var>().value();
      return buffer_data_to_buffer_[var];
    }
    return NullOpt;
  }

312
  void addToUseList(const Buffer &buffer) {
313
314
315
316
317
318
319
    int infer_idx = infer_list_.size();
    if (use_list_.find(buffer) == use_list_.end()) {
      use_list_[buffer] = {};
    }
    use_list_[buffer].push_back(infer_idx);
  }

320
  void VisitStmt_(const ForNode *op) final {
321
322
    if (op->kind == ForKind::kParallel) {
      auto infer = std::make_unique<ParallelOp>(GetRef<For>(op));
323
      for (const auto &[buffer, _] : infer->GetIndiceMap()) {
324
325
326
327
        addToUseList(buffer);
      }
      infer_list_.push_back(std::move(infer));
      thread_var_vec_.push_back(thread_var_);
328
329
330
331
      if (thread_var_.defined() &&
          analyzer_.const_int_bound.IsBound(thread_var_->var)) {
        auto const_int_bound = analyzer_.const_int_bound(thread_var_);
        auto dtype = thread_var_->var.dtype();
332
333
        auto extent =
            const_int_bound->max_value - const_int_bound->min_value + 1;
334
        thread_bounds_vec_.push_back(Range::FromMinExtent(
335
            IntImm(dtype, const_int_bound->min_value), IntImm(dtype, extent)));
336
337
338
      } else {
        thread_bounds_vec_.push_back(Range::FromMinExtent(0, 1));
      }
339
    } else {
340
      IRVisitorWithAnalyzer::VisitStmt(op->body);
341
342
343
    }
  }

344
  void VisitStmt_(const BlockNode *op) final {
345
346
347
348
    for (auto buffer : op->alloc_buffers) {
      buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    if (op->annotations.count(attr::kLayoutMap)) {
349
350
351
352
353
354
      // Check if the layout map is Map<Var, Layout>
      auto map = op->annotations.Get(attr::kLayoutMap).as<Map<Var, Layout>>();
      ICHECK(map.defined()) << "layout map is not defined";
      ICHECK(map.value().defined()) << "layout map is not defined";

      for (const auto &[var, layout] : map.value()) {
355
356
        ICHECK(buffer_data_to_buffer_.count(var))
            << "buffer " << var << " is not found in the block";
357
358
359
360
361
        auto buffer = buffer_data_to_buffer_[var];
        ICHECK(StructuralEqual()(layout->InputShape(), buffer->shape));
        annotated_layout_map_.Set(buffer, layout);
      }
    }
362
    IRVisitorWithAnalyzer::VisitStmt_(op);
363
364
  }

365
  void VisitStmt_(const AttrStmtNode *op) final {
366
367
368
369
370
371
372
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      if (iv->thread_tag == "threadIdx.x") {
        ICHECK(iv->dom->extent.as<IntImmNode>());
        thread_var_ = iv;
      }
    }
373
    IRVisitorWithAnalyzer::VisitStmt_(op);
374
375
376
377
  }

  Map<Var, Buffer> buffer_data_to_buffer_;
  std::vector<std::unique_ptr<Operator>> infer_list_;
378
379
  std::unordered_map<Buffer, std::vector<int>, ObjectPtrHash, ObjectPtrEqual>
      use_list_;
380
381
382
383
  // This is a workaround for cpu backend,
  // we need to define a thread_var for the serial loop.
  IterVar thread_var_ = IterVar(Range::FromMinExtent(0, 1), Var("v_thread"),
                                IterVarType::kDataPar);
384
  std::vector<IterVar> thread_var_vec_;
385
  std::vector<Range> thread_bounds_vec_;
386
387
  Target target_;
  LayoutMap annotated_layout_map_;
388
  bool skip_thread_partition_{false};
389
390
391
};

class LayoutInferencer : public IRMutatorWithAnalyzer {
392
public:
393
  static PrimFunc Substitute(PrimFunc f, bool skip_thread_partition = false) {
394
    arith::Analyzer analyzer;
395
    PrimFuncNode *fptr = f.CopyOnWrite();
396
    fptr->body = ParallelLoopFuser::Fuse(f->body);
397
    BufferUseDefCollector collector(skip_thread_partition);
398
399
    collector.Collect(f);
    auto result = collector.Run();
400
    LayoutInferencer substituter(result, skip_thread_partition, &analyzer);
401
402
403
404
    fptr->body = substituter.VisitStmt(f->body);
    return f;
  }

405
406
private:
  LayoutInferencer(const LayoutInferenceResult result,
407
408
409
                   bool skip_thread_partition, arith::Analyzer *analyzer)
      : arith::IRMutatorWithAnalyzer(analyzer), result_(result),
        skip_thread_partition_(skip_thread_partition){};
410

411
  Stmt VisitStmt_(const BlockNode *op) final {
412
413
414
415
416
417
418
419
420
421
422
423
424
    Block block = Downcast<Block>(IRMutatorWithAnalyzer::VisitStmt_(op));

    for (auto buffer : block->alloc_buffers) {
      if (buffer.scope() == "local.framgent") {
        ICHECK(result_.layout_map.count(buffer))
            << "Cannot inference fragment layout for " << buffer;
      }
    }
    auto block_ptr = block.CopyOnWrite();
    block_ptr->annotations.Set(attr::kLayoutMap, result_.layout_map);
    return block;
  }

425
  Stmt VisitStmt_(const ForNode *op) final {
426
427
    For for_node = Downcast<For>(IRMutatorWithAnalyzer::VisitStmt_(op));
    if (result_.for_map.count(GetRef<For>(op))) {
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
      auto root = GetRef<For>(op);
      // This check is a workaround to support T.Parallel for local buffers.
      // For example:
      //   for i in T.Parallel(1024):
      //     A_local[i] = A_global[i]
      // Here, A_local is a register-local buffer held independently by each
      // thread, so explicit thread binding is not required.
      //
      // We use PostOrderVisit to detect whether the buffer store targets a
      // "local" buffer, which indicates register usage and justifies skipping
      // thread binding.
      bool is_register_store = false;
      PostOrderVisit(root, [&](const ObjectRef &obj) {
        if (const auto *store = obj.as<BufferStoreNode>()) {
          if (store->buffer.scope() == "local") {
            is_register_store = true;
          }
        }
      });

448
      auto loop_layout = result_.for_map[root];
449
      bool parallel_loop = !is_register_store && !skip_thread_partition_;
450

451
      if (parallel_loop) {
452
453
454
        for_node =
            PartitionLoop(for_node, thread_var_->var, analyzer_, loop_layout);
      }
455
      // If none thread bindings are provided, partition the loop
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
      bool has_non_local = false;
      PostOrderVisit(for_node->body, [&](const ObjectRef &obj) {
        if (const auto *load = obj.as<BufferLoadNode>()) {
          String scope = load->buffer.scope();
          if (scope != "local" && scope != "local.fragment") {
            has_non_local = true;
          }
        } else if (const auto *store = obj.as<BufferStoreNode>()) {
          String scope = store->buffer.scope();
          if (scope != "local" && scope != "local.fragment") {
            has_non_local = true;
          }
        }
      });

      if (has_non_local) {
        for_node = VectorizeLoop(for_node);
      }
474

475
476
      if (result_.predicate_map.count(root) && parallel_loop) {
        return IfThenElse(result_.predicate_map[root], for_node);
477
478
479
480
481
482
483
      } else {
        return for_node;
      }
    }
    return for_node;
  }

484
  Stmt VisitStmt_(const AttrStmtNode *op) final {
485
486
487
488
489
490
491
492
493
494
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      ICHECK_NE(iv->thread_tag.length(), 0U);
      if (iv->thread_tag == "threadIdx.x") {
        thread_var_ = iv;
      }
    }
    return IRMutatorWithAnalyzer::VisitStmt_(op);
  }

495
private:
496
  const LayoutInferenceResult result_;
497
498
  IterVar thread_var_ = IterVar(Range::FromMinExtent(0, 1), Var("v_thread"),
                                IterVarType::kDataPar);
499
  bool skip_thread_partition_{false};
500
501
502
503
504
};

tvm::transform::Pass LayoutInference() {
  using namespace tir::transform;
  auto pass_func = [=](PrimFunc f, IRModule m, PassContext ctx) {
505
    f.CopyOnWrite()->body = ParallelLoopTransformer::Substitute(f->body);
506
    ThreadBindingCollector collector;
507
    collector(f->body);
508
509
    bool has_thread_binding = collector.thread_binding_.size() > 0;
    bool skip_thread_partition = !has_thread_binding;
510
    return LayoutInferencer::Substitute(std::move(f), skip_thread_partition);
511
512
513
514
515
516
517
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.LayoutInference", {});
}

TVM_REGISTER_GLOBAL("tl.transform.LayoutInference")
    .set_body_typed(LayoutInference);

518
519
} // namespace tl
} // namespace tvm