example_gqa_fwd_varlen.py 10.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# ruff: noqa
import argparse
import torch
import tilelang
import tilelang.language as T
import tilelang.testing
from einops import rearrange, repeat
from tilelang.profiler import do_bench
from varlen_utils import generate_random_padding_mask, generate_qkv


def attention_ref(
        q,
        k,
        v,
        query_padding_mask=None,
        key_padding_mask=None,
        causal=False,
        window_size=(-1, -1),
        upcast=True,
):
    if causal:
        window_size = (window_size[0], 0)
    dtype_og = q.dtype
    if upcast:
        q, k, v = q.float(), k.float(), v.float()
    dim = q.shape[-1]
    scale = (1.0 / dim)**0.5
    k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
    v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
    scores = torch.einsum("bthd,bshd->bhts", q, k)
    if key_padding_mask is not None:
        scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
    scores = scores * scale
    attention = torch.softmax(scores, dim=-1).to(v.dtype)

    if query_padding_mask is not None:
        attention = attention.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
    output = torch.einsum("bhts,bshd->bthd", attention, v)
    if query_padding_mask is not None:
        output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0)
    return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)


@tilelang.jit(
    out_idx=[6], pass_configs={
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
    })
def flashattn(batch_size,
              groups,
              UQ,
              UKV,
              heads,
              dim,
              is_causal,
              block_M=64,
              block_N=64,
              num_stages=1,
              threads=128):
    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    head_kv = heads // groups
    q_shape = [UQ, heads, dim]
    kv_shape = [UKV, head_kv, dim]
    o_shape = [UQ, heads, dim]
    dtype = "float16"
    accum_dtype = "float"

    @T.prim_func
    def main(
            Q_unpad: T.Tensor(q_shape, dtype),
            K_unpad: T.Tensor(kv_shape, dtype),
            V_unpad: T.Tensor(kv_shape, dtype),
            cu_seqlens_q: T.Tensor([batch_size + 1], "int32"),
            cu_seqlens_k: T.Tensor([batch_size + 1], "int32"),
            max_seqlen_q: T.int32,
            Output_unpad: T.Tensor(o_shape, dtype),
    ):
        with T.Kernel(
                T.ceildiv(max_seqlen_q, block_M), heads, batch_size,
                threads=threads) as (bx, by, bz):
            Q_shared = T.alloc_shared([block_M, dim], dtype)
            K_shared = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_N, dim], dtype)
            O_shared = T.alloc_shared([block_M, dim], dtype)
            acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
            acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
            scores_max = T.alloc_fragment([block_M], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
            scores_scale = T.alloc_fragment([block_M], accum_dtype)
            scores_sum = T.alloc_fragment([block_M], accum_dtype)
            logsum = T.alloc_fragment([block_M], accum_dtype)

            batch_idx = bz
            head_idx = by
            kv_head_idx = head_idx // groups

            q_start_idx = cu_seqlens_q[batch_idx]
            k_start_idx = cu_seqlens_k[batch_idx]
            v_start_idx = cu_seqlens_k[batch_idx]
            q_end_idx = cu_seqlens_q[batch_idx + 1]
            k_end_idx = cu_seqlens_k[batch_idx + 1]
            v_end_idx = cu_seqlens_k[batch_idx + 1]

            q_current_seqlen = q_end_idx - q_start_idx
            k_current_seqlen = k_end_idx - k_start_idx
            v_current_seqlen = v_end_idx - v_start_idx

            T.copy(
                Q_unpad[q_start_idx + bx * block_M:q_start_idx + (bx + 1) * block_M, head_idx, :],
                Q_shared)
            for i, d in T.Parallel(block_M, dim):
                if bx * block_M + i >= q_current_seqlen:
                    Q_shared[i, d] = 0

            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))

            loop_range = T.ceildiv(k_current_seqlen, block_N)

            for k in T.Pipelined(loop_range, num_stages=num_stages):
                T.copy(
                    K_unpad[k_start_idx + k * block_N:k_start_idx + (k + 1) * block_N,
                            kv_head_idx, :], K_shared)
                for i, d in T.Parallel(block_N, dim):
                    if k * block_N + i >= k_current_seqlen:
                        K_shared[i, d] = 0

                if is_causal:
                    for i, j in T.Parallel(block_M, block_N):
                        acc_s[i, j] = T.if_then_else((bx * block_M + i >= k * block_N + j) and
                                                     (bx * block_M + i >= q_current_seqlen or
                                                      k * block_N + j >= k_current_seqlen),
                                                     -T.infinity(acc_s.dtype), 0)
                else:
                    for i, j in T.Parallel(block_M, block_N):
                        acc_s[i, j] = T.if_then_else((bx * block_M + i >= q_current_seqlen or
                                                      k * block_N + j >= k_current_seqlen),
                                                     -T.infinity(acc_s.dtype), 0)

                T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)

                T.copy(scores_max, scores_max_prev)
                T.fill(scores_max, -T.infinity(accum_dtype))
                T.reduce_max(acc_s, scores_max, dim=1, clear=False)

                for i in T.Parallel(block_M):
                    scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
                for i, j in T.Parallel(block_M, block_N):
                    acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                T.reduce_sum(acc_s, scores_sum, dim=1)
                for i in T.Parallel(block_M):
                    logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
                T.copy(acc_s, acc_s_cast)

                for i, j in T.Parallel(block_M, dim):
                    acc_o[i, j] *= scores_scale[i]

                T.copy(
                    V_unpad[v_start_idx + k * block_N:v_start_idx + (k + 1) * block_N,
                            kv_head_idx, :], V_shared)
                for i, d in T.Parallel(block_N, dim):
                    if k * block_N + i >= v_current_seqlen:
                        V_shared[i, d] = 0

                T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)

            for i, j in T.Parallel(block_M, dim):
                acc_o[i, j] /= logsum[i]
            T.copy(acc_o, O_shared)

            for i, d in T.Parallel(block_M, dim):
                if bx * block_M + i < q_current_seqlen:
                    Output_unpad[q_start_idx + bx * block_M + i, head_idx, d] = O_shared[i, d]

    return main


def main(batch: int = 1,
         heads: int = 64,
         q_seqlen: int = 2048,
         k_seqlen: int = 2048,
         dim: int = 128,
         groups: int = 16,
         is_causal: bool = False):
    assert heads % groups == 0, "heads must be divisible by groups"

    flops_per_matmul = 2.0 * batch * heads * q_seqlen * k_seqlen * dim
    total_flops = 2 * flops_per_matmul

    tilelang.testing.set_random_seed(0)

    causal = False
    if causal:
        total_flops *= 0.5

    tilelang.testing.set_random_seed(0)

    dtype = torch.float16
    device = torch.device("cuda")

    head_kv = heads // groups
    q = torch.randn(batch, q_seqlen, heads, dim, dtype=dtype, device=device, requires_grad=True)
    k = torch.randn(batch, k_seqlen, head_kv, dim, dtype=dtype, device=device, requires_grad=True)
    v = torch.randn(batch, k_seqlen, head_kv, dim, dtype=dtype, device=device, requires_grad=True)

    query_padding_mask = generate_random_padding_mask(q_seqlen, batch, device, mode="random")
    key_padding_mask = generate_random_padding_mask(k_seqlen, batch, device, mode="random")

    (
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        q,
        k,
        v,
        output_pad_fn,
        _,
        _,
    ) = generate_qkv(
        q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)

    UQ = q_unpad.shape[0]
    UKV = k_unpad.shape[0]

    kernel = flashattn(
        batch,
        groups,
        UQ,
        UKV,
        heads,
        dim,
        is_causal,
        block_M=64,
        block_N=64,
        num_stages=1,
        threads=128)

    out_unpad = kernel(q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q)
    out = output_pad_fn(out_unpad)

    out_ref, _ = attention_ref(
        q,
        k,
        v,
        query_padding_mask=query_padding_mask,
        key_padding_mask=key_padding_mask,
        causal=is_causal,
    )
    torch.testing.assert_close(out, out_ref, rtol=1e-2, atol=1e-2)
    print("All checks passed.✅")
    latency = do_bench(
        lambda: kernel(q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q))
    print("Tile-lang: {:.2f} ms".format(latency))
    print("Tile-lang: {:.2f} TFlops".format(total_flops / latency * 1e-9))


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=8, help='batch size')
    parser.add_argument('--heads', type=int, default=64, help='query heads')
    parser.add_argument('--groups', type=int, default=16, help='groups')
    parser.add_argument('--q_seqlen', type=int, default=2048, help='query sequence length')
    parser.add_argument('--k_seqlen', type=int, default=2048, help='key/value sequence length')
    parser.add_argument('--dim', type=int, default=128, help='head dim')
    parser.add_argument('--is_causal', action='store_true', help='causal attention')
    args = parser.parse_args()
    main(args.batch, args.heads, args.q_seqlen, args.k_seqlen, args.dim, args.groups,
         args.is_causal)