test_tilelang_kernel_mha.py 7.82 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from tilelang import tvm as tvm
import tilelang.testing
import tilelang.language as T


def flashattn(batch, heads, seq_len, dim, is_causal, block_M, block_N, num_stages, threads):
    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    shape = [batch, seq_len, heads, dim]
    dtype = "float16"
    accum_dtype = "float"

    @T.macro
    def MMA0(
        K: T.Buffer(shape, dtype),
        Q_shared: T.Buffer([block_M, dim], dtype),
        K_shared: T.Buffer([block_N, dim], dtype),
        acc_s: T.Buffer([block_M, block_N], accum_dtype),
        k: T.int32,
        bx: T.int32,
        by: T.int32,
        bz: T.int32,
    ):
        T.copy(K[bz, k * block_N:(k + 1) * block_N, by, :], K_shared)
        if is_causal:
            for i, j in T.Parallel(block_M, block_N):
                acc_s[i, j] = T.if_then_else(bx * block_M + i >= k * block_N + j, 0,
                                             -T.infinity(acc_s.dtype))
        else:
            T.clear(acc_s)
        T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)

    @T.macro
    def MMA1(
            V: T.Buffer(shape, dtype),
            V_shared: T.Buffer([block_M, dim], dtype),
            acc_s_cast: T.Buffer([block_M, block_N], dtype),
            acc_o: T.Buffer([block_M, dim], accum_dtype),
            k: T.int32,
            by: T.int32,
            bz: T.int32,
    ):
        T.copy(V[bz, k * block_N:(k + 1) * block_N, by, :], V_shared)
        T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)

    @T.macro
    def Softmax(
            acc_s: T.Buffer([block_M, block_N], accum_dtype),
            acc_s_cast: T.Buffer([block_M, block_N], dtype),
            scores_max: T.Buffer([block_M], accum_dtype),
            scores_max_prev: T.Buffer([block_M], accum_dtype),
            scores_scale: T.Buffer([block_M], accum_dtype),
            scores_sum: T.Buffer([block_M], accum_dtype),
            logsum: T.Buffer([block_M], accum_dtype),
    ):
        T.copy(scores_max, scores_max_prev)
        T.fill(scores_max, -T.infinity(accum_dtype))
        T.reduce_max(acc_s, scores_max, dim=1, clear=False)
        # To do causal softmax, we need to set the scores_max to 0 if it is -inf
        # This process is called Check_inf in FlashAttention3 code, and it only need to be done
        # in the first ceil_div(kBlockM, kBlockN) steps.
        # for i in T.Parallel(block_M):
        #     scores_max[i] = T.if_then_else(scores_max[i] == -T.infinity(accum_dtype), 0, scores_max[i])
        for i in T.Parallel(block_M):
            scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
        for i, j in T.Parallel(block_M, block_N):
            # Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
            # max * log_2(e)) This allows the compiler to use the ffma
            # instruction instead of fadd and fmul separately.
            acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
        T.reduce_sum(acc_s, scores_sum, dim=1)
        for i in T.Parallel(block_M):
            logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
        T.copy(acc_s, acc_s_cast)

    @T.macro
    def Rescale(
            acc_o: T.Buffer([block_M, dim], accum_dtype),
            scores_scale: T.Buffer([block_M], accum_dtype),
    ):
        for i, j in T.Parallel(block_M, dim):
            acc_o[i, j] *= scores_scale[i]

    @T.prim_func
    def main(
            Q: T.Buffer(shape, dtype),
            K: T.Buffer(shape, dtype),
            V: T.Buffer(shape, dtype),
            Output: T.Buffer(shape, dtype),
    ):
        with T.Kernel(T.ceildiv(seq_len, block_M), heads, batch, threads=threads) as (bx, by, bz):
            Q_shared = T.alloc_shared([block_M, dim], dtype)
            K_shared = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_N, dim], dtype)
            O_shared = T.alloc_shared([block_M, dim], dtype)
            acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
            acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
            scores_max = T.alloc_fragment([block_M], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
            scores_scale = T.alloc_fragment([block_M], accum_dtype)
            scores_sum = T.alloc_fragment([block_M], accum_dtype)
            logsum = T.alloc_fragment([block_M], accum_dtype)

            T.copy(Q[bz, bx * block_M:(bx + 1) * block_M, by, :], Q_shared)
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))

            loop_range = (
                T.min(T.ceildiv(seq_len, block_N), T.ceildiv(
                    (bx + 1) * block_M, block_N)) if is_causal else T.ceildiv(seq_len, block_N))

            for k in T.Pipelined(loop_range, num_stages=num_stages):
                MMA0(K, Q_shared, K_shared, acc_s, k, bx, by, bz)
                Softmax(acc_s, acc_s_cast, scores_max, scores_max_prev, scores_scale, scores_sum,
                        logsum)
                Rescale(acc_o, scores_scale)
                MMA1(V, V_shared, acc_s_cast, acc_o, k, by, bz)
            for i, j in T.Parallel(block_M, dim):
                acc_o[i, j] /= logsum[i]
            T.copy(acc_o, O_shared)
            T.copy(O_shared, Output[bz, bx * block_M:(bx + 1) * block_M, by, :])

    return main


def run_mha(batch, heads, seq_len, dim, is_causal, block_M, block_N, num_stages=2, threads=128):
    program = flashattn(batch, heads, seq_len, dim, is_causal, block_M, block_N, num_stages,
                        threads)

131
132
    kernel = tilelang.compile(program, out_idx=[3])
    profiler = kernel.get_profiler()
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

    def ref_program(Q, K, V):
        import torch
        import torch.nn.functional as F
        dim = Q.size(-1)
        scores = torch.einsum('bqhd,bkhd->bhqk', Q, K)
        scores = scores / torch.sqrt(torch.tensor(dim, dtype=scores.dtype))
        if is_causal:
            seq_len = Q.size(1)
            mask = torch.tril(torch.ones(seq_len, seq_len, device=scores.device))
            mask = mask.unsqueeze(0).unsqueeze(0)
            scores = scores.masked_fill(mask == 0, float('-inf'))
        attention_weights = F.softmax(scores, dim=-1)
        output = torch.einsum('bhqk,bkhd->bqhd', attention_weights, V)
        return output

149
    profiler.assert_allclose(ref_program, atol=1e-2, rtol=1e-2, max_mismatched_ratio=0.05)
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230


def test_mha_causal_dim64():
    run_mha(
        batch=4,
        heads=8,
        seq_len=8192,
        dim=64,
        is_causal=True,
        block_M=64,
        block_N=64,
        num_stages=2,
        threads=128)


def test_mha_no_causal_dim64():
    run_mha(
        batch=4,
        heads=8,
        seq_len=8192,
        dim=64,
        is_causal=False,
        block_M=64,
        block_N=64,
        num_stages=2,
        threads=128)


# def test_mha_causal_dim128():
#     run_mha(
#         batch=4,
#         heads=8,
#         seq_len=8192,
#         dim=128,
#         is_causal=True,
#         block_M=64,
#         block_N=64,
#         num_stages=1,
#         threads=128)

# def test_mha_no_causal_dim128():
#     run_mha(
#         batch=4,
#         heads=8,
#         seq_len=8192,
#         dim=128,
#         is_causal=False,
#         block_M=64,
#         block_N=64,
#         num_stages=1,
#         threads=128)


def test_mha_causal_dim256():
    run_mha(
        batch=4,
        heads=8,
        seq_len=8192,
        dim=256,
        is_causal=True,
        block_M=64,
        block_N=64,
        num_stages=1,
        threads=128)


def test_mha_no_causal_dim256():
    run_mha(
        batch=4,
        heads=8,
        seq_len=8192,
        dim=256,
        is_causal=False,
        block_M=64,
        block_N=64,
        num_stages=1,
        threads=128)


if __name__ == "__main__":
    tilelang.testing.main()