benchmark_matmul.py 9.94 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
import argparse
import itertools
import logging

import tilelang as tl
import tilelang.language as T
from tilelang.autotuner import autotune, jit

# Configure logger
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)


14
def ref_program(A, B):
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    """
    A reference matrix multiplication program, used to compare performance.

    Parameters
    ----------
    A : numpy.ndarray
        The matrix with shape (M, K).
    B : numpy.ndarray
        The matrix with shape (N, K).

    Returns
    -------
    np.ndarray
        The result of A @ B.T, shape (M, N).
    """
    return A @ B.T


def get_configs(M, N, K, with_roller=False):
    """
    Generate a list of configuration dictionaries that will be used for tuning.
    
    Parameters
    ----------
    with_roller : bool
        Whether to enable bitblas roller to deduce search spaces

    Returns
    -------
    list of dict
        Each configuration dict includes various block sizes, pipeline stages,
        thread numbers, and other parameters to explore during autotuning.
    """
    if with_roller:
49
50
51
        from tilelang.carver.template import MatmulTemplate
        from tilelang.carver.arch import CUDA
        from tilelang.carver.roller.rasterization import NoRasterization
52
        arch = CUDA("cuda")
53
        topk = 10
54

55
        carve_template = MatmulTemplate(
56
57
58
59
60
            M=M,
            N=N,
            K=K,
            in_dtype="float16",
            out_dtype="float16",
61
            accum_dtype="float",
62
        ).with_arch(arch)
63

64
65
66
67
        func = carve_template.equivalent_function()
        assert func is not None, "Function is None"

        roller_hints = carve_template.recommend_hints(topk=topk)
68
69
70

        if roller_hints is None:
            raise ValueError("No Roller Hints Found for TensorCore Scheduling")
71

72
73
74
75
76
        configs = []
        for hint in roller_hints:
            config = {}
            block_m, block_n = hint.block
            warp_m, warp_n = hint.warp
77
78
            # block_rows, block_cols represents warp partitioning
            block_rows, block_cols = block_m // warp_m, block_n // warp_n
79
80
81
            config["block_M"] = block_m
            config["block_N"] = block_n
            config["block_K"] = hint.rstep[0]
82
83
84
            config["num_stages"] = hint.pipeline_stage
            config["thread_num"] = block_rows * block_cols * 32
            config["policy"] = T.GemmWarpPolicy.from_warp_partition(block_rows, block_cols)
85
86
87
88
89
90
91
92
93
94
95
            config["enable_rasteration"] = hint.rasterization_plan is not NoRasterization
            configs.append(config)
        for config in configs:
            print(config)
    else:

        block_M = [64, 128, 256]
        block_N = [64, 128, 256]
        block_K = [32, 64]
        num_stages = [0, 1, 2, 3]
        thread_num = [128, 256]
96
        policy = [T.GemmWarpPolicy.Square]
97
98
99
100
101
102
103
104
        enable_rasterization = [True, False]
        _configs = list(
            itertools.product(
                block_M,
                block_N,
                block_K,
                num_stages,
                thread_num,
105
                policy,
106
107
108
109
110
111
112
113
114
115
                enable_rasterization,
            ))

        configs = [
            {
                "block_M": c[0],
                "block_N": c[1],
                "block_K": c[2],
                "num_stages": c[3],
                "thread_num": c[4],
116
117
                "policy": c[5],
                "enable_rasteration": c[6],  # keep param name for backward-compat
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
            } for c in _configs
        ]
    return configs


def matmul(M, N, K, with_roller):
    """
    Create an autotuned matrix multiplication kernel for matrices of shape:
      - A: (M, K)
      - B: (N, K)
      - C: (M, N)

    Parameters
    ----------
    M : int
        The dimension M of the matrix multiplication.
    N : int
        The dimension N of the matrix multiplication.
    K : int
        The dimension K of the matrix multiplication.

    Returns
    -------
    (best_latency, best_config, ref_latency)
        best_latency : float
            The best latency found among the tuned configurations.
        best_config : dict
            The parameter configuration that yielded best_latency.
        ref_latency : float
            The baseline latency of the reference program (for computing speedup).
    """

    # Decorate the kernel with autotune & jit, specifying:
    #  - Tuning config list
    #  - Profiling keys
    #  - Warmup and repetition counts for better measurement
    #  - A reference program for correctness verification
    #  - The "tvm" profiler backend
    #  - HIP as the compilation target (modify as needed for your hardware)

    @autotune(
        configs=get_configs(M, N, K, with_roller),
        keys=[
            "block_M",
            "block_N",
            "block_K",
            "num_stages",
            "thread_num",
166
            "policy",
167
168
169
            "enable_rasteration",
        ],
        warmup=3,
170
        rep=20,
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    )
    @jit(
        out_idx=[2],
        supply_type=tl.TensorSupplyType.Integer,
        ref_prog=ref_program,
        skip_check=True,
        target="auto",
    )
    def kernel(
        block_M=None,
        block_N=None,
        block_K=None,
        num_stages=None,
        thread_num=None,
185
        policy=None,
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
        enable_rasteration=None,
    ):
        """
        The actual kernel to compute C = A @ B^T.

        Parameters
        ----------
        block_M : int
            Block size in M dimension.
        block_N : int
            Block size in N dimension.
        block_K : int
            Block size in K dimension.
        num_stages : int
            Number of pipelined stages (for asynchronous load).
        thread_num : int
            Number of threads to use per block.
        enable_rasteration : bool
            Whether to enable rasterization (swizzling) optimization.
        k_pack : int
            K dimension packing factor to improve memory coalescing.

        Returns
        -------
        Function
            A TVM Tensor Language function (T.prim_func) that computes matmul.
        """
        # Use half-precision for input data to reduce memory bandwidth,
        # accumulate in float for better numerical accuracy
        dtype = "float16"
        accum_dtype = "float"

        @T.prim_func
        def main(
                A: T.Buffer((M, K), dtype),
                B: T.Buffer((N, K), dtype),
                C: T.Buffer((M, N), dtype),
        ):
            """
            The compiled TVM function for block-level matrix multiplication.

            - We divide the entire (M, N) domain into blocks of shape
              (block_M, block_N).
            - Each block has its own allocated shared memory for sub-blocks
              of A and B.
            - The partial results go into C_local, and then we copy them back
              to global memory C.
            """
            # Bind x-dimension to block index in N,
            #     y-dimension to block index in M.
            with T.Kernel(
                    T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=thread_num) as (bx, by):

                # Allocate shared memory for A sub-block of shape (block_M, block_K)
                A_shared = T.alloc_shared((block_M, block_K), dtype)
                # Allocate shared memory for B sub-block of shape (block_N, block_K)
                B_shared = T.alloc_shared((block_N, block_K), dtype)
                # Allocate a local fragment for intermediate accumulation
                C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
245
246
                # Allocate a shared memory for C sub-block of shape (block_M, block_N)
                C_shared = T.alloc_shared((block_M, block_N), dtype)
247
248
249
250
251
252
253
254
255
256

                # Enable (or disable) swizzling optimization
                T.use_swizzle(panel_size=10, enable=enable_rasteration)

                # Clear out the accumulation buffer
                T.clear(C_local)

                # Loop over sub-blocks in K dimension, pipelined by num_stages
                for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                    # Load a sub-block of A from global memory into A_shared
257
                    T.copy(A[by * block_M, k * block_K], A_shared)
258
                    # Load a sub-block of B from global memory into B_shared
259
                    T.copy(B[bx * block_N, k * block_K], B_shared)
260
261
262
263
264
265
266
                    # Perform a partial matrix multiplication:
                    #   C_local += A_shared @ B_shared^T
                    T.gemm(
                        A_shared,
                        B_shared,
                        C_local,
                        transpose_B=True,
267
                        policy=policy,
268
269
                    )
                # Write back the results from C_local to the global memory C
270
271
                T.copy(C_local, C_shared)
                T.copy(C_shared, C[by * block_M, bx * block_N])
272
273
274
275
276
277
278
279
280

        return main

    return kernel()


if __name__ == "__main__":
    # Parse command-line arguments for matrix dimensions
    parser = argparse.ArgumentParser(description="Autotuned MatMul Benchmark")
281
282
283
    parser.add_argument("--m", type=int, default=16384, help="Matrix dimension M")
    parser.add_argument("--n", type=int, default=16384, help="Matrix dimension N")
    parser.add_argument("--k", type=int, default=16384, help="Matrix dimension K")
284
285
286
287
288
289
290
291
    parser.add_argument(
        "--with_roller",
        action="store_true",
        help="Whether to enable BitBLAS roller for search space",
    )
    args = parser.parse_args()

    M, N, K = args.m, args.n, args.k
292
    with_roller = args.with_roller
293
294
295
296
297
298
299
300
301
302
303
304
305

    # Compute total floating-point operations to measure throughput
    total_flops = 2 * M * N * K

    # matmul(...) returns (best_latency, best_config, ref_latency)
    best_latency, best_config, ref_latency = matmul(M, N, K, with_roller)

    # Print out the benchmark results
    print(f"Best latency (s): {best_latency}")
    print(f"Best TFlops: {total_flops / best_latency * 1e-9:.3f}")
    print(f"Best config: {best_config}")

    print(f"Reference TFlops: {total_flops / ref_latency * 1e-9:.3f}")