test_tilelang_kernel_dequantize_gemm.py 22.9 KB
Newer Older
1
2
3
4
5
6
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import torch
import torch.backends
import tilelang.testing
from tilelang import tvm as tvm
7
from tvm import DataType, tir
8
9
import tilelang as TL
import tilelang.language as T
10
from tilelang import JITKernel, Profiler
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
tilelang.testing.set_random_seed(0)


def _tir_u8_to_f4_to_f16(nbit: int, val: tir.PrimExpr, pos: tir.PrimExpr, dtype: str):
    assert nbit == 4
    assert dtype == "float16"
    assert val.dtype == "uint8"
    # e_f4 == 0 -> e_f16 = 0
    # e_f4 != 0 -> e_f16 = e_f4 + 8 = e_f4 | (1000)_2
    # s1e2n1
    mask = tir.const((1 << nbit) - 1, "uint16")
    f4 = (val >> (pos.astype("uint16") * tir.const(nbit, "uint16"))) & mask
    s = f4 >> tir.const(3, "uint16")
    e_f4 = f4 & tir.const(7, "uint16")
    e_f16 = e_f4 | tir.const(8, "uint16")
    val_f16 = tir.reinterpret(
        "float16",
        ((e_f16 | (s << tir.const(5, "uint16"))) << tir.const(10, "uint16")).astype("uint16"))
    # return tir.Select(e_f4 == tir.const(0, "uint32"), tir.const(0, "float16"), val_f16)
    return val_f16


def torch_convert(tensor):

    def print_bit(name, val):
        val_cpu = val.cpu().item()
        binary_repr = f'{val_cpu:032b}'
        print(name, binary_repr)

    def _convert(val, pos):
        assert val.dtype == torch.uint8
        val = val.view(torch.int8)
        mask = (1 << 4) - 1
        f4 = ((val >> (pos * 4)) & mask).to(torch.int16)
        s = f4 >> 3
        e_f4 = f4 & 7
        e_f16 = e_f4 | 8
        val_f16 = ((e_f16 | (s << 5)) << 10) & 0xFFFF
        lower_16_bits = (val_f16 & 0xFFFF).to(torch.uint16)
        return lower_16_bits.view(torch.float16)

    N = tensor.shape[0]
    K = tensor.shape[1]
    new_tensor = torch.empty(N, K * 2, dtype=torch.float16, device=tensor.device)
    for i in range(new_tensor.shape[0]):
        for j in range(new_tensor.shape[1]):
            new_tensor[i][j] = _convert(tensor[i][j // 2], j % 2)
    return new_tensor


def _convert_test(N, K, block_N, block_K, in_dtype, num_bits=4, threads=128):
    num_elems_per_byte = 8 // num_bits
    storage_dtype = "uint8"
    B_shape = (N, K // num_elems_per_byte)
    B_shared_shape = (block_N, block_K // num_elems_per_byte)
    B_dequantize_shared_shape = (block_N, block_K)

    @T.prim_func
    def main(
            B: T.Buffer(B_shape, storage_dtype),
            C: T.Buffer((N, K), in_dtype),
    ):
        with T.Kernel(T.ceildiv(N, block_N), threads=threads) as (bx):
            B_shared = T.alloc_shared(B_shared_shape, storage_dtype)
            B_local = T.alloc_fragment(B_shared_shape, storage_dtype)
            B_dequantize_local = T.alloc_fragment(B_dequantize_shared_shape, in_dtype)

            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=1):
                T.copy(B[bx * block_N, k * block_K // num_elems_per_byte], B_shared)
                T.copy(B_shared, B_local)
                for i, j in T.Parallel(block_N, block_K):
                    B_dequantize_local[i, j] = _tir_u8_to_f4_to_f16(
                        num_bits,
                        B_local[i, j // num_elems_per_byte],
                        j % num_elems_per_byte,
                        dtype=in_dtype,
                    )
                T.copy(B_dequantize_local, C[bx * block_N, k * block_K])

    return main


def test_fp4_fp16_convert_close():
    N, K = 256, 256
    block_N, block_K = 64, 64
    program = _convert_test(
        N,
        K,
        block_N,
        block_K,
        "float16",
    )

    mod, params = tilelang.lower(program)
    mod = Profiler(mod, params, [1], tilelang.TensorSupplyType.Integer)

    B = torch.randint(0, 16, (N, K // 2), dtype=torch.uint8, device="cuda").to(torch.uint8)
    tl_out = mod.func(B)
    ref_out = torch_convert(B)
    assert torch.allclose(tl_out, ref_out, rtol=0.01, atol=0.01), (tl_out, ref_out)
    print("Pass")


def matmul_fp16xfp4(M,
                    N,
                    K,
                    in_dtype,
                    out_dtype,
                    accum_dtype,
                    block_M=64,
                    block_N=64,
                    block_K=64,
                    num_stages=1,
                    threads=128):
    num_bits = 4

    def kernel_func(block_M, block_N, block_K, num_stages, threads):
        num_elems_per_byte = 8 // num_bits
        storage_dtype = "uint8"
        A_shape = (M, K)
        B_shape = (N, K // num_elems_per_byte)
        A_shared_shape = (block_M, block_K)
        B_shared_shape = (block_N, block_K // num_elems_per_byte)
        B_dequantize_shared_shape = (block_N, block_K)
        assert K % (block_K) == 0

        @T.prim_func
        def main(
                A: T.Buffer(A_shape, in_dtype),
                B: T.Buffer(B_shape, storage_dtype),
                Ct: T.Buffer((N, M), out_dtype),
        ):
            with T.Kernel(
                    T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):
                A_shared = T.alloc_shared(A_shared_shape, in_dtype)
                B_shared = T.alloc_shared(B_shared_shape, storage_dtype)
                B_local = T.alloc_fragment(B_shared_shape, storage_dtype)
                B_dequantize_local = T.alloc_fragment(B_dequantize_shared_shape, in_dtype)
                B_dequantize_prev_local = T.alloc_fragment(B_dequantize_shared_shape, in_dtype)
                Ct_local = T.alloc_fragment((block_N, block_M), accum_dtype)
                Ct_shared = T.alloc_shared((block_N, block_M), out_dtype)

                T.annotate_layout({
                    B_shared: tilelang.layout.make_swizzled_layout(B_shared),
                    Ct_shared: tilelang.layout.make_swizzled_layout(Ct_shared),
                })

                T.clear(Ct_local)
                for k in T.Pipelined(K // block_K, num_stages=num_stages):
                    T.copy(A[by * block_M, k * block_K], A_shared)
                    T.copy(B[bx * block_N, k * block_K // num_elems_per_byte], B_shared)
                    T.copy(B_shared, B_local)
                    for i, j in T.Parallel(block_N, block_K):
                        B_dequantize_local[i, j] = _tir_u8_to_f4_to_f16(
                            num_bits,
                            B_local[i, j // num_elems_per_byte],
                            j % num_elems_per_byte,
                            dtype=in_dtype,
                        )
                    T.copy(B_dequantize_local, B_dequantize_prev_local)
                    T.gemm(B_dequantize_prev_local, A_shared, Ct_local, transpose_B=True)
                T.copy(Ct_local, Ct_shared)
                T.copy(Ct_shared, Ct[bx * block_N:(bx + 1) * block_N,
                                     by * block_M:(by + 1) * block_M])

        return main

    return kernel_func(block_M=64, block_N=64, block_K=64, num_stages=1, threads=128)


def ref_program(A, qB):
    dtypeC = "float16"
    B = torch_convert(qB)
    C = torch.matmul(A.to(torch.float), B.T.to(torch.float))
    C = C.to(torch.__getattribute__(dtypeC))
    return C.transpose(0, 1)


def assert_simple_impl_float16xfp4_gemm(M,
                                        N,
                                        K,
                                        in_dtype,
                                        out_dtype,
                                        accum_dtype,
                                        block_M=64,
                                        block_N=64,
                                        block_K=64,
                                        num_stages=1,
                                        threads=128):
    func = matmul_fp16xfp4(M, N, K, in_dtype, out_dtype, accum_dtype, block_M, block_N, block_K,
                           num_stages, threads)

    torch_func = JITKernel(func, [2])
    profiler = torch_func.get_profiler()
    profiler.assert_allclose(ref_program)


def test_simple_impl_float16xfp4_gemm():
    assert_simple_impl_float16xfp4_gemm(256, 256, 256, "float16", "float16", "float32", 64, 64, 64,
                                        1, 128)
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459


def matmul(
    M,
    N,
    K,
    block_M,
    block_N,
    block_K,
    in_dtype,
    out_dtype,
    accum_dtype,
    num_stages,
    threads,
    num_bits=4,
):
    from bitblas.quantization import _tir_packed_to_unsigned_convert
    num_elems_per_byte = 8 // num_bits
    storage_dtype = "int8"
    storage_nbit = int("".join(c for c in storage_dtype if c.isdigit()))
    storage_type = str("".join(c for c in storage_dtype if not c.isdigit()))
    A_shape = (M, K)
    B_shape = (N, K // num_elems_per_byte)
    A_shared_shape = (block_M, block_K)
    B_shared_shape = (block_N, block_K // num_elems_per_byte)
    B_dequantize_shared_shape = (block_N, block_K)
    MAX_TRANSACTION_SIZE_IN_BITS = 128
    local_size = MAX_TRANSACTION_SIZE_IN_BITS // DataType(in_dtype).bits
    local_size_compressed = local_size // num_elems_per_byte

    import tvm.tl.language as T

    @T.prim_func
    def main(
            A: T.Buffer(A_shape, in_dtype),
            B: T.Buffer(B_shape, storage_dtype),
            C: T.Buffer((M, N), out_dtype),
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):
            A_shared = T.alloc_shared(A_shared_shape, in_dtype)
            B_shared = T.alloc_shared(B_shared_shape, storage_dtype)
            B_local = T.alloc_local([local_size_compressed], storage_dtype)
            B_dequantize_local = T.alloc_local([local_size], in_dtype)
            B_dequantize_shared = T.alloc_shared(B_dequantize_shared_shape, in_dtype)
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)

            tx = T.thread_binding(0, threads, thread="threadIdx.x")

            T.clear(C_local)
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                T.copy(A[by * block_M, k * block_K], A_shared)
                T.copy(B[bx * block_N, k * block_K // num_elems_per_byte], B_shared)

                for i in T.serial(block_N * block_K // num_elems_per_byte //
                                  (threads * local_size_compressed)):
                    for v in T.vectorized(0, local_size_compressed):
                        index = i * threads * local_size_compressed + tx * local_size_compressed + v
                        vi = index // (block_K // num_elems_per_byte)
                        vj = index % (block_K // num_elems_per_byte)
                        B_local[v] = B_shared[vi, vj]
                    for v in T.serial(0, local_size):
                        B_dequantize_local[v] = _tir_packed_to_unsigned_convert(
                            storage_type, storage_nbit)(
                                num_bits,
                                B_local[v // num_elems_per_byte],
                                v % num_elems_per_byte,
                                dtype=in_dtype,
                            )
                    for v in T.vectorized(0, local_size):
                        index = i * threads * local_size + tx * local_size + v
                        vi = index // block_K
                        vj = index % block_K
                        B_dequantize_shared[vi, vj] = B_dequantize_local[v]

                T.gemm(A_shared, B_dequantize_shared, C_local, transpose_B=True)

            T.copy(C_local, C[by * block_M, bx * block_N])

    return main


def run_gemm(
    M,
    N,
    K,
    in_dtype,
    out_dtype,
    dtypeAccum,
    block_M,
    block_N,
    block_K,
    num_stages=3,
    num_threads=128,
):
    program = matmul(
        M,
        N,
        K,
        block_M,
        block_N,
        block_K,
        in_dtype,
        out_dtype,
        dtypeAccum,
        num_stages,
        num_threads,
    )

    mod, params = TL.lower(program)
    mod = TL.Profiler(mod, params, [2], TL.TensorSupplyType.Integer)

    out = mod.run_once()
    assert out is not None

    def ref_program(A, qB):
        import torch

        B = (
            torch.zeros(qB.shape[0], qB.shape[1] * 8 // 4,
                        dtype=torch.half).to(torch.half).to(A.device))
        for i in range(B.shape[0]):
            for j in range(B.shape[1]):
                B[i][j] = ((qB[i][j // 2] >> (4 * (j % 2))) & 0xF).to(torch.half)
        C = torch.matmul(A.to(torch.float), B.T.to(torch.float))
        C = C.to(torch.__getattribute__(out_dtype))
        return C

    mod.assert_allclose(ref_program)


@tvm.testing.requires_package("bitblas")
def tl_matmul_with_ladder_weight_only_transform_block_reduce_int4(
    M,
    N,
    K,
    in_dtype,
    out_dtype,
    accum_dtype,
    transform_b,
):
    from bitblas.tl.utils import make_mma_swizzle_layout as make_swizzle_layout
    from bitblas.tl.mma_macro_generator import (
        TensorCoreIntrinEmitterWithLadderTransform,)

    from bitblas.gpu.intrin.lop3 import decode_i4_to_f16
    assert in_dtype in [
        "float16",
        "int8",
    ], "Currently only float16 and int8 are supported"
    assert out_dtype in [
        "float16",
        "float32",
        "int32",
    ], "Currently only float16, float32 and int32 are supported"
    num_bits = 4
    num_elems_per_byte = 8 // num_bits
    storage_dtype = "int8"

    micro_size_x = micro_size_y = micro_size_k = 16

    if out_dtype == "int32":
        micro_size_k = 32

    # This is a debug config
    block_row_warps = 2
    block_col_warps = 2

    warp_rows = 4
    warp_cols = 4
    warp_row_tiles = micro_size_x * warp_rows
    warp_col_tiles = micro_size_y * warp_cols
    shared_scope = "shared.dyn"

    # Pipeline Stage
    stage = 2
    reduce_k = 1

    block_M = block_row_warps * warp_row_tiles
    block_N = block_col_warps * warp_col_tiles
    block_K = 32 if in_dtype == "float16" else 64
    chunk = block_K // reduce_k

    is_smooth_a = False
    can_swizzle = block_K * DataType(in_dtype).bits == 512
    apply_pad_a = not (is_smooth_a or can_swizzle)
    pad_factor = 8

    A_shape = (M, K)
    B_shape = (N // micro_size_y, K // micro_size_k, micro_size_y,
               micro_size_k // num_elems_per_byte)
    A_shared_shape = (block_M, (block_K + pad_factor) if apply_pad_a else block_K)
    B_shared_shape = (
        block_N // micro_size_y,
        block_K // micro_size_k,
        micro_size_y,
        micro_size_k // num_elems_per_byte,
    )
    C_shared_shape = (
        block_M // micro_size_x,
        block_N // micro_size_y,
        micro_size_x,
        micro_size_y,
    )

    warp_size = 32
    threads = warp_size * (block_row_warps * block_col_warps)
    local_size = (micro_size_x * micro_size_y) // warp_size
    warp_rows = warp_row_tiles // micro_size_x
    warp_cols = warp_col_tiles // micro_size_y

    # MMA Wrapper to Auto Generate Code for MMA
    mma_emitter = TensorCoreIntrinEmitterWithLadderTransform(
        a_dtype=in_dtype,
        b_dtype=in_dtype,
        accum_dtype=accum_dtype,
        a_transposed=False,
        b_transposed=True,
        block_row_warps=block_row_warps,
        block_col_warps=block_col_warps,
        warp_row_tiles=warp_row_tiles,
        warp_col_tiles=warp_col_tiles,
        chunk=chunk,
        reduce_k=reduce_k,
        transform_kind_b=transform_b,
        num_elems_per_byte=num_elems_per_byte)

    vec_load_qb = 16
    if block_N * (block_K // reduce_k) // num_elems_per_byte // threads < vec_load_qb:
        vec_load_qb = block_N * (block_K // reduce_k) // num_elems_per_byte // threads

    @T.prim_func
    def main(
            A: T.Buffer(A_shape, in_dtype),
            B: T.Buffer(B_shape, storage_dtype),
            C: T.Buffer((M, N), out_dtype),
    ):
        with T.Kernel(
                T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads,
                prelude=decode_i4_to_f16) as (bx, by):

            A_shared = T.alloc_shared(A_shared_shape, in_dtype, scope=shared_scope)
            B_shared = T.alloc_shared(B_shared_shape, storage_dtype, scope=shared_scope)
            C_shared = T.alloc_shared(C_shared_shape, out_dtype, scope=shared_scope)
            A_local = T.alloc_local((warp_rows * local_size), in_dtype)
            B_local = T.alloc_local((warp_cols * local_size // num_elems_per_byte), storage_dtype)
            B_dequantize_local = T.alloc_local((warp_cols * local_size), in_dtype)
            C_local = T.alloc_local((warp_rows * warp_cols * local_size), accum_dtype)
            reduced_accum_res = T.alloc_local(0, accum_dtype)
460
            thread_binding = T.thread_binding(0, threads, "threadIdx.x")
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
            rk = T.thread_binding(0, reduce_k, "threadIdx.y")

            T.annotate_layout({
                A_shared: make_swizzle_layout(A_shared),
            })

            T.use_swizzle(panel_size=10)

            T.clear(C_local)

            for ko in T.Pipelined((K // block_K), num_stages=stage):

                # Load A into shared memory
                for i, k in T.Parallel(block_M, (block_K // reduce_k)):
                    vk = rk * (block_K // reduce_k) + k
                    A_shared[i, vk] = A[by * block_M + i, ko * block_K + vk]

                # TODO(lei): Layout Inference Pass is not efficient to handle the four dims int8 load
                for i in T.serial(block_N * (block_K // reduce_k) // num_elems_per_byte //
                                  (threads * vec_load_qb)):
                    for v in T.vectorized(0, vec_load_qb):
482
                        t = thread_binding
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
                        idx = i * threads * vec_load_qb * reduce_k + rk * threads * vec_load_qb + t * vec_load_qb + v
                        vkk = idx % (micro_size_k // num_elems_per_byte)
                        vjj = (idx // (micro_size_k // num_elems_per_byte)) % micro_size_y
                        vk = (idx // (micro_size_k // num_elems_per_byte) // micro_size_y) % (
                            block_K // micro_size_k)
                        vj = (idx // (micro_size_k // num_elems_per_byte) // micro_size_y //
                              (block_K // micro_size_k)) % (
                                  block_N // micro_size_y)
                        B_shared[vj, vk, vjj,
                                 vkk] = B[bx * (block_N // micro_size_y) + vj,
                                          ko * (block_K // micro_size_k) + vk, vjj, vkk]

                for ki in T.serial(0, (block_K // (micro_size_k * reduce_k))):

                    # Load A into fragment
                    mma_emitter.ldmatrix_a(
                        A_local,
                        A_shared,
                        ki,
                        rk=rk,
                    )

                    # Load B into fragment
                    mma_emitter.ldmatrix_b(
                        B_local,
                        B_shared,
                        ki,
                        rk=rk,
                    )

                    for j in T.serial(warp_cols):
                        local_size_b = mma_emitter.local_size_b
                        T.call_extern('handle', 'decode_i4u_to_f16',
                                      T.address_of(B_local[j * local_size_b // num_elems_per_byte]),
                                      T.address_of(B_dequantize_local[j * local_size_b]), 8)

                    mma_emitter.mma(A_local, B_dequantize_local, C_local)

            if reduce_k > 1:
                for n in T.serial(warp_rows * warp_cols * local_size):
                    T.attr(
                        T.comm_reducer(lambda x, y: x + y, [T.float16(0)]),
                        "reduce_scope",
                        T.reinterpret(T.uint64(0), dtype="handle"),
                    )
                    T.evaluate(
                        T.tvm_thread_allreduce(
                            T.uint32(1),
                            C_local[n],
                            True,
                            reduced_accum_res[0],
                            rk,
                            dtype="handle",
                        ))
                    if rk == 0:
                        C_local[n] = reduced_accum_res[0]

            if rk == 0:
                mma_emitter.stmatrix(
                    C_local,
                    C_shared,
                )

            for i, j in T.Parallel(block_M, (block_N // reduce_k)):
                vj = rk * (block_N // reduce_k) + j
                C[by * block_M + i,
                  bx * block_N + vj] = C_shared[i // micro_size_x, vj // micro_size_y,
                                                i % micro_size_x, vj % micro_size_y]

    return main


def assert_tl_matmul_with_ladder_weight_only_transform_block_reduce_int4_correctness(
    M,
    N,
    K,
    in_dtype,
    out_dtype,
    accum_dtype,
    transform_b,
):
    import bitblas
    matmul = tl_matmul_with_ladder_weight_only_transform_block_reduce_int4(
        M, N, K, in_dtype, out_dtype, accum_dtype, transform_b)

    mod, params = TL.lower(matmul)
    src_code = mod.imported_modules[0].get_source()

    # src_code is the generated cuda source
    assert src_code is not None
    num_bits = 4
    num_elems_per_byte = 8 // num_bits
    storage_dtype = "int8"

    A = torch.rand(M, K, device="cuda", dtype=getattr(torch, in_dtype))
    qB = torch.randint(
        0, 127, (N, K // num_elems_per_byte), device="cuda", dtype=getattr(torch, storage_dtype))
    C = torch.zeros(M, N, device="cuda", dtype=getattr(torch, accum_dtype))

    ladder_permutate_config = bitblas.ops.LadderPermutateConfig(
        M=N,
        N=K,
        transform_kind=transform_b,
        transpose_matrix=True,
        dequantize_bits=num_bits,
        storage_dtype=storage_dtype,
    )

    ladder_permutate = bitblas.ops.LadderPermutate(ladder_permutate_config)

    lop3_permutate_config = bitblas.ops.LOP3PermutateConfig(
        M=N,
        N=K,
        datatype=in_dtype,
        dequantize_bits=num_bits,
        storage_dtype=storage_dtype,
    )
    lop3_permutate = bitblas.ops.LOP3Permutate(
        config=lop3_permutate_config,
        target=tvm.target.Target("llvm"),
    )
    QLB = ladder_permutate(qB.cpu()).cuda()
    QLB = lop3_permutate(QLB.cpu()).cuda()

    mod = TL.Profiler(mod, params, [], TL.TensorSupplyType.Integer)

    mod(A, QLB, C)

    latency = mod.do_bench(mod.func, warmup=25)

    # Ensure that the latency is not None
    assert latency is not None

    B = (
        torch.zeros(qB.shape[0], qB.shape[1] * 8 // 4,
                    dtype=torch.half).to(torch.half).to(A.device))
    for i in range(B.shape[0]):
        for j in range(B.shape[1]):
            B[i][j] = ((qB[i][j // 2] >> (4 * (j % 2))) & 0xF).to(torch.half)

    # Get Reference Result
    ref_c = torch.matmul(A, B.T).to(getattr(torch, accum_dtype))
    print("Ref C: ", ref_c)
    print("C: ", C)
    torch.testing.assert_close(C, ref_c, rtol=1e-2, atol=1e-2)


@tilelang.testing.requires_package("bitblas")
def test_run_dequantize_gemm():
    run_gemm(256, 256, 256, "float16", "float16", "float16", 128, 128, 32, num_threads=128)
    run_gemm(256, 256, 256, "int8", "int32", "int32", 128, 128, 32, num_threads=128)


@tilelang.testing.requires_package("bitblas")
def test_assert_tl_matmul_with_ladder_weight_only_transform_block_reduce_int4():
    assert_tl_matmul_with_ladder_weight_only_transform_block_reduce_int4_correctness(
        256, 1024, 512, "float16", "float16", "float16", 3)


if __name__ == "__main__":
    tilelang.testing.main()