example_chunk_delta_bwd.py 22.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
# Reference: fla/ops/common/chunk_delta_h.py

import sys  # noqa: F401

import tilelang
import tilelang.language as T

print(tilelang.__file__, flush=True)

# Add your fla repository path to sys.path
# Currently we use the fla repository from the flash-linear-attention project at commit id f03cb3ae
# sys.path.insert(0, "/home/tzj/flash-linear-attention")
try:
    import fla
    print(fla.__file__, flush=True)
    from fla.ops.common.chunk_delta_h import chunk_gated_delta_rule_bwd_dhu
except ImportError:
    print("fla not found, using tilelang implementation")
    fla = None

import torch
import torch.nn.functional as F

torch.random.manual_seed(0)
# torch.set_printoptions(profile="full")

tilelang.disable_cache()

from utils import *


def prepare_input(
    B,
    S,
    H,
    DK,
    DV,
    chunk_size,
    input_dtype,
    output_dtype,
    accum_dtype,
    gate_dtype,
    state_dtype,
):
    Q = torch.randn(B, S, H, DK, dtype=input_dtype).cuda()
    K = torch.randn(B, S, H, DK, dtype=input_dtype).cuda()
    K = F.normalize(K, dim=-1, p=2)
    W = torch.randn(B, S, H, DK, dtype=input_dtype).cuda()
    # Note: G should be in logspace and do chunkwise cumsum
    G = torch.randn(B, S, H, dtype=gate_dtype).cuda()
    G = F.logsigmoid(G)
    try:
        from fla.ops.utils.cumsum import chunk_local_cumsum
        G = chunk_local_cumsum(G, chunk_size)
    except ImportError:
        print("fla not found, skip cumsum")

    h0 = torch.randn(B, H, DK, DV, dtype=input_dtype).cuda()
    dht = torch.randn(B, H, DK, DV, dtype=input_dtype).cuda()
    dO = torch.randn(B, S, H, DV, dtype=input_dtype).cuda()
    dv = torch.randn(B, S, H, DV, dtype=input_dtype).cuda()
    return Q, K, W, G, h0, dht, dO, dv


def prepare_input_fake(
    B,
    S,
    H,
    DK,
    DV,
    chunk_size,
    input_dtype,
    output_dtype,
    accum_dtype,
    gate_dtype,
    state_dtype,
):
    Q = torch.ones(B, S, H, DK, dtype=input_dtype).cuda()
    K = torch.ones(B, S, H, DK, dtype=input_dtype).cuda()
    W = torch.ones(B, S, H, DK, dtype=input_dtype).cuda()
    G = torch.ones(B, S, H, dtype=gate_dtype).cuda()
    h0 = torch.ones(B, H, DK, DV, dtype=input_dtype).cuda()
    dht = torch.ones(B, H, DK, DV, dtype=input_dtype).cuda()
    dO = torch.ones(B, S, H, DV, dtype=input_dtype).cuda()
    dv = torch.ones(B, S, H, DV, dtype=input_dtype).cuda()
    return Q, K, W, G, h0, dht, dO, dv


def prepare_output(
    B,
    S,
    H,
    DK,
    DV,
    chunk_size,
    output_dtype,
    gate_dtype,
    state_dtype,
):
    BS = S // chunk_size
    dh = torch.empty(B, BS, H, DK, DV, dtype=output_dtype).cuda()
    dh0 = torch.empty(B, H, DK, DV, dtype=state_dtype).cuda()
    dv2 = torch.empty(B, S, H, DV, dtype=output_dtype).cuda()
    return dh, dh0, dv2


def torch_chunk_gated_delta_rule_bwd_dhu(
    Q: torch.Tensor,
    K: torch.Tensor,
    W: torch.Tensor,
    G: torch.Tensor,
    h0: torch.Tensor,
    dht: torch.Tensor,
    dO: torch.Tensor,
    dv: torch.Tensor,
    scale: float,
    use_g: bool,
    use_initial_state: bool,
    use_final_state_gradient: bool,
    input_dtype,
    output_dtype,
    accum_dtype,
    gate_dtype,
    state_dtype,
):
    B, S, H, DK = Q.shape
    DV = dv.shape[-1]
    block_S = 64
    BS = S // block_S
    dh, dh0, dv2 = torch.empty((B, BS, H, DK, DV), dtype=output_dtype), torch.empty(
        (B, H, DK, DV), dtype=state_dtype), torch.empty((B, S, H, DV), dtype=output_dtype)
    dh_tmp = torch.empty((B, H, DK, DV), dtype=accum_dtype)
    dv_tmp = torch.empty((B, S, H, DV), dtype=accum_dtype)
    Q_tmp = torch.empty((B, S, H, DK), dtype=accum_dtype)

    if use_final_state_gradient:
        dh_tmp = dht.clone().to(accum_dtype)
    else:
        dh_tmp = torch.zeros_like(dht).to(accum_dtype)

    for i_s in range(BS - 1, -1, -1):
        dh[:, i_s, :, :, :] = dh_tmp
        dv_tmp = torch.matmul(K[:, i_s * block_S:(i_s + 1) * block_S, :, :].permute(0, 2, 1, 3),
                              dh_tmp.to(K.dtype)).permute(0, 2, 1, 3)
        if use_g:
            for i_bh in range(B * H):
                i_b, i_h = i_bh // H, i_bh % H
                for i_s2 in range(block_S):
                    if G[i_b, i_s * block_S + block_S - 1, i_h] - G[i_b, i_s * block_S + i_s2,
                                                                    i_h] <= 0:
                        dv_tmp[i_b, i_s2,
                               i_h, :] *= torch.exp(G[i_b, i_s * block_S + block_S - 1, i_h] -
                                                    G[i_b, i_s * block_S + i_s2, i_h])
                    else:
                        dv_tmp[i_b, i_s2, i_h, :] = 0
        dv_tmp += dv[:, i_s * block_S:(i_s + 1) * block_S, :, :]
        dv2[:, i_s * block_S:(i_s + 1) * block_S, :, :] = dv_tmp

        if use_g:
            G_last = G[:, i_s * block_S + block_S - 1, :]
            for i_bh in range(B * H):
                i_b, i_h = i_bh // H, i_bh % H
                dh_tmp[i_b, i_h, :, :] *= torch.exp(G_last[i_b, i_h])
            Q_tmp = Q[:, i_s * block_S:(i_s + 1) * block_S, :, :]
            for i_s2 in range(block_S):
                for i_k in range(DK):
                    Q_tmp[:, i_s2, :, i_k] *= torch.exp(G[:, i_s * block_S + i_s2, :])
        Q_tmp *= scale
        W_tmp = W[:, i_s * block_S:(i_s + 1) * block_S, :, :]
        dO_tmp = dO[:, i_s * block_S:(i_s + 1) * block_S, :, :]

        torch.backends.cuda.matmul.allow_tf32 = True
        dh_tmp += torch.matmul(Q_tmp.permute(0, 2, 3, 1), dO_tmp.permute(0, 2, 1, 3))
        dh_tmp -= torch.matmul(W_tmp.permute(0, 2, 3, 1), dv_tmp.permute(0, 2, 1, 3))
        torch.backends.cuda.matmul.allow_tf32 = False

    if use_initial_state:
        dh0 = dh_tmp[:, :, :, :]
    else:
        dh0 = torch.zeros_like(dh_tmp[:, :, :, :])
    print(dh0.dtype)

    return dh, dh0, dv2


@tilelang.jit(out_idx=[-3, -2, -1])
def tilelang_chunk_gated_delta_rule_bwd_dhu(
    # task config
    B,
    S,
    H,
    DK,
    DV,
    input_dtype,
    output_dtype,
    accum_dtype,
    gate_dtype,
    state_dtype,
    chunk_size,
    scale,
    use_g=True,
    use_initial_state=True,
    use_final_state_gradient=True,
    # kernel config
    block_DV=64,
    threads=256,
    num_stages=0,
):
    block_S = chunk_size
    # Should support cu_seqlen
    BS = S // block_S

    Q_shape = (B, S, H, DK)
    K_shape = (B, S, H, DK)
    W_shape = (B, S, H, DK)
    G_shape = (B, S, H)
    h0_shape = (B, H, DK, DV)
    dht_shape = (B, H, DK, DV)
    dO_shape = (B, S, H, DV)
    dv_shape = (B, S, H, DV)

    dh_shape = (B, BS, H, DK, DV)
    dh0_shape = (B, H, DK, DV)
    dv2_shape = (B, S, H, DV)

    @T.prim_func
    def kernel(
            # Input
            Q: T.Tensor(Q_shape, dtype=input_dtype),
            K: T.Tensor(K_shape, dtype=input_dtype),
            W: T.Tensor(W_shape, dtype=input_dtype),
            G: T.Tensor(G_shape, dtype=gate_dtype),
            h0: T.Tensor(h0_shape, dtype=input_dtype),
            dht: T.Tensor(dht_shape, dtype=input_dtype),
            dO: T.Tensor(dO_shape, dtype=input_dtype),
            dv: T.Tensor(dv_shape, dtype=input_dtype),
            # Output
            dh: T.Tensor(dh_shape, dtype=output_dtype),
            dh0: T.Tensor(dh0_shape, dtype=state_dtype),
            dv2: T.Tensor(dv2_shape, dtype=output_dtype),
    ):
        with T.Kernel(T.ceildiv(DV, block_DV), B * H, threads=threads) as (bv, bbh):
            bb, bh = bbh // H, bbh % H

            b_dh_shared = T.alloc_shared((DK, block_DV), dtype=output_dtype)
            b_dh_shared_fp32 = T.alloc_shared((DK, block_DV), dtype=state_dtype)
            b_dh_fragment = T.alloc_fragment((DK, block_DV), dtype=accum_dtype)
            b_dh_fragment_1 = T.alloc_fragment((DK, block_DV), dtype=accum_dtype)
            b_dh_fragment_2 = T.alloc_fragment((DK, block_DV), dtype=accum_dtype)
            dv_shared = T.alloc_shared((block_S, block_DV), dtype=input_dtype)
            dv_fragment = T.alloc_fragment((block_S, block_DV), dtype=accum_dtype)
            dv_fragment_2 = T.alloc_fragment((block_S, block_DV), dtype=accum_dtype)
            dO_shared = T.alloc_shared((block_S, block_DV), dtype=input_dtype)
            dO_shared_t = T.alloc_shared((block_DV, block_S), dtype="float32")
            dO_fragment = T.alloc_fragment((block_S, block_DV), dtype="float32")
            dO_fragment_t = T.alloc_fragment((block_DV, block_S), dtype="float32")
            K_shared = T.alloc_shared((block_S, DK), dtype=input_dtype)

            Q_shared = T.alloc_shared((block_S, DK), dtype=input_dtype)
            Q_shared_fp32 = T.alloc_shared((block_S, DK), dtype="float32")
            W_shared = T.alloc_shared((block_S, DK), dtype=input_dtype)

            G_last_local = T.alloc_local((1), dtype=gate_dtype)
            G_last_local_exp = T.alloc_local((1), dtype=gate_dtype)
            G_shared = T.alloc_shared((block_S), dtype=gate_dtype, scope="shared")
            G_fragment = T.alloc_fragment((block_S), dtype=gate_dtype)
            G_fragment_post = T.alloc_fragment((block_S), dtype=gate_dtype)
            G_fragment_exp = T.alloc_fragment((block_S), dtype=gate_dtype)
            Q_fragment = T.alloc_fragment((block_S, DK), dtype=accum_dtype)
            Q_fragment_t = T.alloc_fragment((DK, block_S), dtype=accum_dtype)

            T.use_swizzle(10)

            T.annotate_layout({
                b_dh_shared: tilelang.layout.make_swizzled_layout(b_dh_shared),
                b_dh_shared_fp32: tilelang.layout.make_swizzled_layout(b_dh_shared_fp32),
                dv_shared: tilelang.layout.make_swizzled_layout(dv_shared),
                dO_shared: tilelang.layout.make_swizzled_layout(dO_shared),
                dO_shared_t: tilelang.layout.make_swizzled_layout(dO_shared_t),
                K_shared: tilelang.layout.make_swizzled_layout(K_shared),
                Q_shared: tilelang.layout.make_swizzled_layout(Q_shared),
                Q_shared_fp32: tilelang.layout.make_swizzled_layout(Q_shared_fp32),
                W_shared: tilelang.layout.make_swizzled_layout(W_shared),
            })

            if use_final_state_gradient:
                T.copy(dht[bb, bh, 0:DK, bv * block_DV:(bv + 1) * block_DV], b_dh_shared)
                T.copy(b_dh_shared, b_dh_fragment)
            else:
                T.clear(b_dh_fragment)

            for i_s in T.Pipelined(T.ceildiv(S, block_S), num_stages=num_stages):
                # The gradient should be stored in the reverse order
                i_s_inv = T.ceildiv(S, block_S) - i_s - 1

                # Store the updated dh
                T.copy(b_dh_fragment, b_dh_shared)
                T.copy(b_dh_shared, dh[bb, i_s_inv, bh, 0:DK, bv * block_DV:(bv + 1) * block_DV])

                # Update dv
                T.copy(K[bb, i_s_inv * block_S:(i_s_inv + 1) * block_S, bh, 0:DK], K_shared)
                T.gemm(K_shared, b_dh_shared, dv_fragment, clear_accum=True)

                if use_g:
                    T.copy(
                        G[bb, i_s_inv * block_S:(i_s_inv + 1) * block_S, bh],
                        G_shared,
                        disable_tma=True)
                    T.copy(G_shared, G_fragment)
                    G_last_local[0] = G_shared[block_S - 1]
                    G_last_local_exp[0] = T.exp(G_last_local[0])
                    for i_s2 in T.Parallel(block_S):
                        G_fragment_post[i_s2] = T.exp(G_last_local[0] - G_fragment[i_s2])
                    for i_s2, i_v in T.Parallel(block_S, block_DV):
                        # with T.If(G_last_local[0] - G_shared[i_s2] <= 0):
                        with T.If(G_last_local[0] - G_fragment[i_s2] <= 0):
                            with T.Then():
                                dv_fragment[i_s2,
                                            i_v] = dv_fragment[i_s2, i_v] * G_fragment_post[i_s2]
                            with T.Else():
                                dv_fragment[i_s2, i_v] = 0

                T.copy(
                    dv[bb, i_s_inv * block_S:(i_s_inv + 1) * block_S, bh,
                       bv * block_DV:(bv + 1) * block_DV], dv_shared)
                T.copy(dv_shared, dv_fragment_2)
                for i_s2, i_v in T.Parallel(block_S, block_DV):
                    dv_fragment[i_s2, i_v] = dv_fragment[i_s2, i_v] + dv_fragment_2[i_s2, i_v]

                # Store the updated dv
                T.copy(dv_fragment, dv_shared)
                T.copy(
                    dv_shared, dv2[bb, i_s_inv * block_S:(i_s_inv + 1) * block_S, bh,
                                   bv * block_DV:(bv + 1) * block_DV])

                # Update dh
                T.copy(Q[bb, i_s_inv * block_S:(i_s_inv + 1) * block_S, bh, 0:DK], Q_shared)
                T.copy(W[bb, i_s_inv * block_S:(i_s_inv + 1) * block_S, bh, 0:DK], W_shared)

                T.clear(Q_fragment)
                if use_g:
                    for i_k, i_v in T.Parallel(DK, block_DV):
                        b_dh_fragment[i_k, i_v] *= G_last_local_exp[0]
                    T.copy(Q_shared, Q_fragment)
                    for i_s2 in T.Parallel(block_S):
                        G_fragment_exp[i_s2] = T.exp(G_shared[i_s2])
                    for i_s2, i_k in T.Parallel(block_S, DK):
                        # Q_fragment[i_s2, i_k] = Q_fragment[i_s2, i_k] * T.exp(G_shared[i_s2]) * scale
                        Q_fragment[i_s2, i_k] = Q_fragment[i_s2, i_k] * G_fragment_exp[i_s2] * scale
                else:
                    T.copy(Q_shared, Q_fragment)
                    for i_s2, i_k in T.Parallel(block_S, DK):
                        Q_fragment[i_s2, i_k] = Q_fragment[i_s2, i_k] * scale
                # Get transpose of Q_fragment to meet tf32 gemm requirement
                for i_s2, i_k in T.Parallel(block_S, DK):
                    Q_fragment_t[i_k, i_s2] = Q_fragment[i_s2, i_k]

                T.copy(
                    dO[bb, i_s_inv * block_S:(i_s_inv + 1) * block_S, bh,
                       bv * block_DV:(bv + 1) * block_DV], dO_shared)
                T.copy(dO_shared, dO_fragment)
                for i_s2, i_v in T.Parallel(block_S, block_DV):
                    dO_fragment_t[i_v, i_s2] = dO_fragment[i_s2, i_v]
                T.copy(dO_fragment_t, dO_shared_t)

                T.clear(b_dh_fragment_1)
                T.gemm(Q_fragment_t, dO_shared_t, b_dh_fragment_1, transpose_B=True)
                T.clear(b_dh_fragment_2)
                T.gemm(W_shared, dv_shared, b_dh_fragment_2, transpose_A=True)
                for i_k, i_v in T.Parallel(DK, block_DV):
                    b_dh_fragment[i_k, i_v] += b_dh_fragment_1[i_k, i_v] - b_dh_fragment_2[i_k, i_v]

            if use_initial_state:
                T.copy(b_dh_fragment, dh0[bb, bh, 0:DK, bv * block_DV:(bv + 1) * block_DV])

    return kernel


def test_result(dh_0, dh0_0, dv2_0, dh_1, dh0_1, dv2_1, name):
    try:
        torch.testing.assert_close(dh_0, dh_1, rtol=1e-2, atol=1e-2, equal_nan=True)
        print(f"{name} dh_0 and dh_1 passed for {name}")
    except Exception as e:
        print(f"{name} dh_0 and dh_1 are not close for {name}")
        print(e, end="\n\n")
    try:
        torch.testing.assert_close(dh0_0, dh0_1, rtol=1e-2, atol=1e-2, equal_nan=True)
        print(f"{name} dh0_0 and dh0_1 passed for {name}")
    except Exception as e:
        print(f"{name} dh0_0 and dh0_1 are not close for {name}")
        print(e, end="\n\n")
    try:
        torch.testing.assert_close(dv2_0, dv2_1, rtol=1e-2, atol=1e-2, equal_nan=True)
        print(f"{name} dv2_0 and dv2_1 passed for {name}")
    except Exception as e:
        print(f"{name} dv2_0 and dv2_1 are not close for {name}")
        print(e, end="\n\n")

    close = torch.isclose(dh_0, dh_1, rtol=1e-2, atol=1e-2)
    mismatch_indices = torch.nonzero(~close, as_tuple=True)
    error_num = 0
    for indices in zip(*mismatch_indices):
        if error_num < 100:
            print(
                f"{name} dh_0[{[idx.item() for idx in indices]}] = {dh_0[indices[0].item(), indices[1].item(), indices[2].item(), indices[3].item(), indices[4].item()]}, dh_1[{[idx.item() for idx in indices]}] = {dh_1[indices[0].item(), indices[1].item(), indices[2].item(), indices[3].item(), indices[4].item()]}"
            )
            error_num += 1
    close = torch.isclose(dh0_0, dh0_1, rtol=1e-2, atol=1e-2)
    mismatch_indices = torch.nonzero(~close, as_tuple=True)
    error_num = 0
    for indices in zip(*mismatch_indices):
        if error_num < 100:
            print(
                f"{name} dh0_0[{[idx.item() for idx in indices]}] = {dh0_0[indices[0].item(), indices[1].item(), indices[2].item(), indices[3].item()]}, dh0_1[{[idx.item() for idx in indices]}] = {dh0_1[indices[0].item(), indices[1].item(), indices[2].item(), indices[3].item()]}"
            )
            error_num += 1
    close = torch.isclose(dv2_0, dv2_1, rtol=1e-2, atol=1e-2)
    mismatch_indices = torch.nonzero(~close, as_tuple=True)
    error_num = 0
    for indices in zip(*mismatch_indices):
        if error_num < 100:
            print(
                f"{name} dv2_0[{[idx.item() for idx in indices]}] = {dv2_0[indices[0].item(), indices[1].item(), indices[2].item(), indices[3].item()]}, dv2_1[{[idx.item() for idx in indices]}] = {dv2_1[indices[0].item(), indices[1].item(), indices[2].item(), indices[3].item()]}"
            )
            error_num += 1


def run_test(
    B,
    S,
    H,
    DK,
    DV,
    input_dtype,
    output_dtype,
    accum_dtype,
    gate_dtype,
    state_dtype,
    chunk_size,
    scale,
    use_g=True,
    use_initial_state=True,
    use_final_state_gradient=True,
    block_DV=64,
    threads=256,
    num_stages=0,
    use_torch=False,
):
    Q, K, W, G, h0, dht, dO, dv = prepare_input(B, S, H, DK, DV, chunk_size,
                                                getattr(torch, input_dtype),
                                                getattr(torch, output_dtype),
                                                getattr(torch, accum_dtype),
                                                getattr(torch, gate_dtype),
                                                getattr(torch, state_dtype))
    dh_ref, dh0_ref, dv2_ref = prepare_output(B, S, H, DK, DV, chunk_size,
                                              getattr(torch, output_dtype),
                                              getattr(torch, gate_dtype),
                                              getattr(torch, state_dtype))
    dh_tilelang, dh0_tilelang, dv2_tilelang = prepare_output(B, S, H, DK, DV, chunk_size,
                                                             getattr(torch, output_dtype),
                                                             getattr(torch, gate_dtype),
                                                             getattr(torch, state_dtype))

    # fla ref
    print("fla running...", flush=True)
    if use_g:
        dh_ref, dh0_ref, dv2_ref = chunk_gated_delta_rule_bwd_dhu(Q, K, W, G, h0, dht, dO, dv,
                                                                  scale)
    else:
        G = G.fill_(0)
        dh_ref, dh0_ref, dv2_ref = chunk_gated_delta_rule_bwd_dhu(Q, K, W, G, h0, dht, dO, dv,
                                                                  scale)

    # tilelang
    print("tilelang running...", flush=True)
    kernel = tilelang_chunk_gated_delta_rule_bwd_dhu(B, S, H, DK, DV, input_dtype, output_dtype,
                                                     accum_dtype, gate_dtype, state_dtype,
                                                     chunk_size, scale, use_g, use_initial_state,
                                                     use_final_state_gradient, block_DV, threads,
                                                     num_stages)
    # kernel = tilelang.compile(program)
    print(kernel.get_kernel_source())
    dh_tilelang, dh0_tilelang, dv2_tilelang = kernel(Q, K, W, G, h0, dht, dO, dv)

    fla_time = do_bench(
        chunk_gated_delta_rule_bwd_dhu, Q, K, W, G, h0, dht, dO, dv, scale, chunk_size=chunk_size)
    tilelang_time = do_bench(kernel, Q, K, W, G, h0, dht, dO, dv)

    print(f"fla time: {fla_time} ms")
    print(f"tilelang time: {tilelang_time} ms")

    assert_similar(dh_tilelang, dh_ref, 1e-5, "fla-tilelang", data="dh")
    assert_similar(dh0_tilelang, dh0_ref, 1e-5, "fla-tilelang", data="dh0")
    assert_similar(dv2_tilelang, dv2_ref, 1e-5, "fla-tilelang", data="dv2")

    # torch ref
    if use_torch:
        print("torch running...", flush=True)
        if use_g:
            dh_ref_torch, dh0_ref_torch, dv2_ref_torch = torch_chunk_gated_delta_rule_bwd_dhu(
                Q, K, W, G, h0, dht, dO, dv, scale, use_g, use_initial_state,
                use_final_state_gradient, getattr(torch, input_dtype), getattr(torch, output_dtype),
                getattr(torch, accum_dtype), getattr(torch,
                                                     gate_dtype), getattr(torch, state_dtype))
            dh_ref_torch = dh_ref_torch.cuda()
            dh0_ref_torch = dh0_ref_torch.cuda()
            dv2_ref_torch = dv2_ref_torch.cuda()
        else:
            dh_ref_torch, dh0_ref_torch, dv2_ref_torch = torch_chunk_gated_delta_rule_bwd_dhu(
                Q, K, W, None, h0, dht, dO, dv, scale, use_g, use_initial_state,
                use_final_state_gradient, getattr(torch, input_dtype), getattr(torch, output_dtype),
                getattr(torch, accum_dtype), getattr(torch,
                                                     gate_dtype), getattr(torch, state_dtype))
            dh_ref_torch = dh_ref_torch.cuda()
            dh0_ref_torch = dh0_ref_torch.cuda()
            dv2_ref_torch = dv2_ref_torch.cuda()

        assert_similar(dh_ref_torch, dh_ref, 1e-5, "torch-fla", data="dh")
        assert_similar(dh0_ref_torch, dh0_ref, 1e-5, "torch-fla", data="dh0")
        assert_similar(dv2_ref_torch, dv2_ref, 1e-5, "torch-fla", data="dv2")
        assert_similar(dh_ref_torch, dh_tilelang, 1e-5, "torch-tilelang", data="dh")
        assert_similar(dh0_ref_torch, dh0_tilelang, 1e-5, "torch-tilelang", data="dh0")
        assert_similar(dv2_ref_torch, dv2_tilelang, 1e-5, "torch-tilelang", data="dv2")


def do_bench(fn, *args, warmup=10, rep=10, **kwargs):
    """
    Do benchmark for a function.
    """
    start_event = [torch.cuda.Event(enable_timing=True) for i in range(rep)]
    end_event = [torch.cuda.Event(enable_timing=True) for i in range(rep)]
    for _ in range(warmup):
        fn(*args, **kwargs)

    torch.cuda.synchronize()
    for i in range(rep):
        start_event[i].record()
        fn(*args, **kwargs)
        end_event[i].record()
    torch.cuda.synchronize()

    # Record clocks
    times = torch.tensor(
        [s.elapsed_time(e) for s, e in zip(start_event, end_event)],
        dtype=torch.float,
    )

    return times.mean().item()


def main():
    DK = 128
    run_test(
        B=1,
        S=32768,
        H=8,
        DK=DK,
        DV=128,
        input_dtype="bfloat16",
        output_dtype="bfloat16",
        accum_dtype="float32",
        gate_dtype="float32",
        state_dtype="float32",
        chunk_size=64,
        scale=DK**-0.5,
        use_g=True,
        use_initial_state=True,
        use_final_state_gradient=True,
        block_DV=32,
        threads=128,
        num_stages=1,
        use_torch=False,
    )


if __name__ == "__main__":
    main()