example_gqa_decode.py 24.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
import torch
import torch.nn.functional as F
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
from einops import rearrange, einsum
import argparse
import itertools

10
torch.random.manual_seed(0)
11

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
def get_configs():
    block_N = [64, 128]
    block_H = [64]
    num_split = [2, 4, 8]
    num_stages = [1, 2, 3]
    threads = [128]
    _configs = list(itertools.product(block_N, block_H, num_split, num_stages, threads))

    configs = [{
        'block_N': c[0],
        'block_H': c[1],
        'num_split': c[2],
        'num_stages': c[3],
        'threads': c[4]
    } for c in _configs]
    return configs


def flashattn(batch, heads, groups, seqlen_kv, dim, tune=False):
    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    shape_q = [batch, heads, dim]
    shape_k = [batch, seqlen_kv, groups, dim]
    shape_v = [batch, seqlen_kv, groups, dim]
    shape_o = [batch, heads, dim]
    dtype = "float16"
    accum_dtype = "float"
    kv_group_num = heads // groups

    def kernel_func(block_N, block_H, num_split, num_stages, threads):
        part_shape = [batch, heads, num_split, dim]
        valid_block_H = min(block_H, kv_group_num)
44
        valid_block_N = min(block_N, seqlen_kv // num_split)
45

46
47
        @T.macro
        def flash_attn(
48
49
50
51
52
                Q: T.Tensor(shape_q, dtype),
                K: T.Tensor(shape_k, dtype),
                V: T.Tensor(shape_v, dtype),
                mask: T.Tensor([batch, seqlen_kv, groups], "uint8"),
                Output: T.Tensor([batch, heads, dim], dtype),
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        ):
            with T.Kernel(
                    batch, heads // valid_block_H, num_split, threads=threads) as (bx, by, bz):
                Q_shared = T.alloc_shared([block_H, dim], dtype)
                K_shared = T.alloc_shared([block_N, dim], dtype)
                V_shared = T.alloc_shared([block_N, dim], dtype)
                O_shared = T.alloc_shared([valid_block_H, dim], dtype)
                acc_s = T.alloc_fragment([block_H, block_N], accum_dtype)
                acc_s_cast = T.alloc_fragment([block_H, block_N], dtype)
                mask_local = T.alloc_fragment([block_N], "uint8")
                acc_o = T.alloc_fragment([block_H, dim], accum_dtype)
                scores_max = T.alloc_fragment([block_H], accum_dtype)
                scores_max_prev = T.alloc_fragment([block_H], accum_dtype)
                scores_scale = T.alloc_fragment([block_H], accum_dtype)
                scores_sum = T.alloc_fragment([block_H], accum_dtype)
                logsum = T.alloc_fragment([block_H], accum_dtype)

                bid = bx
                hid = by
                cur_kv_head = hid // (kv_group_num // valid_block_H)

                T.copy(Q[bid, hid * valid_block_H:hid * valid_block_H + block_H, :], Q_shared)
                T.fill(acc_o, 0)
                T.fill(logsum, 0)
                T.fill(scores_max, -T.infinity(accum_dtype))

                loop_range = T.ceildiv((seqlen_kv // num_split), block_N)
                for k in T.Pipelined(loop_range, num_stages=num_stages):
                    T.copy(K[bid, k * block_N:(k + 1) * block_N, cur_kv_head, :], K_shared)
                    T.copy(mask[bid, k * block_N:(k + 1) * block_N, cur_kv_head], mask_local)
                    T.clear(acc_s)
                    T.gemm(
                        Q_shared,
                        K_shared,
                        acc_s,
                        transpose_B=True,
                        policy=T.GemmWarpPolicy.FullRow)
                    for i, j in T.Parallel(block_H, block_N):
                        acc_s[i, j] = T.if_then_else(mask_local[j] != 0, acc_s[i, j],
                                                     -T.infinity(accum_dtype))
                    T.copy(scores_max, scores_max_prev)
                    T.fill(scores_max, -T.infinity(accum_dtype))
                    T.reduce_max(acc_s, scores_max, dim=1, clear=False)
                    for i in T.Parallel(block_H):
                        scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
                    for i, j in T.Parallel(block_H, block_N):
                        acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                    T.reduce_sum(acc_s, scores_sum, dim=1)
                    for i in T.Parallel(block_H):
                        logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
                    T.copy(acc_s, acc_s_cast)
                    for i, j in T.Parallel(block_H, dim):
                        acc_o[i, j] *= scores_scale[i]
                    T.copy(V[bid, k * block_N:(k + 1) * block_N, cur_kv_head, :], V_shared)
                    T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
                for i, j in T.Parallel(block_H, dim):
                    acc_o[i, j] /= logsum[i]
                for i in T.Parallel(block_H):
                    logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale
                T.copy(acc_o[:valid_block_H, :], O_shared)
                T.copy(O_shared, Output[bid, hid * valid_block_H:(hid + 1) * valid_block_H, :])

115
116
        @T.macro
        def flash_attn_split(
117
118
119
120
121
122
                Q: T.Tensor(shape_q, dtype),
                K: T.Tensor(shape_k, dtype),
                V: T.Tensor(shape_v, dtype),
                mask: T.Tensor([batch, seqlen_kv, groups], "uint8"),
                glse: T.Tensor([batch, heads, num_split], dtype),
                Output_partial: T.Tensor(part_shape, dtype),
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
        ):
            with T.Kernel(
                    batch, heads // valid_block_H, num_split, threads=threads) as (bx, by, bz):
                Q_shared = T.alloc_shared([block_H, dim], dtype)
                K_shared = T.alloc_shared([block_N, dim], dtype)
                V_shared = T.alloc_shared([block_N, dim], dtype)
                O_shared = T.alloc_shared([valid_block_H, dim], dtype)
                acc_s = T.alloc_fragment([block_H, block_N], accum_dtype)
                acc_s_cast = T.alloc_fragment([block_H, block_N], dtype)
                mask_local = T.alloc_fragment([block_N], "uint8")
                acc_o = T.alloc_fragment([block_H, dim], accum_dtype)
                scores_max = T.alloc_fragment([block_H], accum_dtype)
                scores_max_prev = T.alloc_fragment([block_H], accum_dtype)
                scores_scale = T.alloc_fragment([block_H], accum_dtype)
                scores_sum = T.alloc_fragment([block_H], accum_dtype)
                logsum = T.alloc_fragment([block_H], accum_dtype)

                bid = bx
                hid = by
                sid = bz
                cur_kv_head = hid // (kv_group_num // valid_block_H)

                T.copy(Q[bid, hid * valid_block_H:hid * valid_block_H + block_H, :], Q_shared)
                T.fill(acc_o, 0)
                T.fill(logsum, 0)
                T.fill(scores_max, -T.infinity(accum_dtype))

                loop_range = T.ceildiv((seqlen_kv // num_split), block_N)
151
                T.fill(K_shared, 0)
152
153
154
                for k in T.Pipelined(loop_range, num_stages=num_stages):
                    T.copy(
                        K[bid, (seqlen_kv // num_split) * sid +
155
156
                          k * valid_block_N:(seqlen_kv // num_split) * sid +
                          (k + 1) * valid_block_N, cur_kv_head, :], K_shared)
157
158
                    T.copy(
                        mask[bid, (seqlen_kv // num_split) * sid +
159
160
                             k * valid_block_N:(seqlen_kv // num_split) * sid +
                             (k + 1) * valid_block_N, cur_kv_head], mask_local)
161
162
163
164
165
166
167
168
                    T.clear(acc_s)
                    T.gemm(
                        Q_shared,
                        K_shared,
                        acc_s,
                        transpose_B=True,
                        policy=T.GemmWarpPolicy.FullRow)
                    for i, j in T.Parallel(block_H, block_N):
169
170
171
                        acc_s[i, j] = T.if_then_else(
                            (mask_local[j] != 0) & (j < seqlen_kv // num_split), acc_s[i, j],
                            -T.infinity(accum_dtype))
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
                    T.copy(scores_max, scores_max_prev)
                    T.fill(scores_max, -T.infinity(accum_dtype))
                    T.reduce_max(acc_s, scores_max, dim=1, clear=False)
                    for i in T.Parallel(block_H):
                        scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
                    for i, j in T.Parallel(block_H, block_N):
                        acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                    T.reduce_sum(acc_s, scores_sum, dim=1)
                    for i in T.Parallel(block_H):
                        logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
                    T.copy(acc_s, acc_s_cast)
                    for i, j in T.Parallel(block_H, dim):
                        acc_o[i, j] *= scores_scale[i]
                    T.copy(
                        V[bid, (seqlen_kv // num_split) * sid +
187
188
                          k * valid_block_N:(seqlen_kv // num_split) * sid +
                          (k + 1) * valid_block_N, cur_kv_head, :], V_shared)
189
190
191
192
193
194
                    T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
                for i, j in T.Parallel(block_H, dim):
                    acc_o[i, j] /= logsum[i]
                for i in T.Parallel(block_H):
                    logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale

195
196
197
                for i in T.Parallel(block_H):
                    if i < valid_block_H:
                        glse[bid, hid * valid_block_H + i, sid] = logsum[i]
198
199
200
201
202
203
                T.copy(acc_o[:valid_block_H, :], O_shared)
                T.copy(O_shared, Output_partial[bid, hid * valid_block_H:(hid + 1) * valid_block_H,
                                                sid, :])

        @T.macro
        def combine(
204
205
206
                glse: T.Tensor([batch, heads, num_split], dtype),
                Output_partial: T.Tensor(part_shape, dtype),
                Output: T.Tensor(shape_o, dtype),
207
208
209
210
211
        ):
            with T.Kernel(heads, batch, threads=128) as (by, bz):
                po_local = T.alloc_fragment([dim], dtype)
                o_accum_local = T.alloc_fragment([dim], accum_dtype)
                lse_local = T.alloc_fragment([num_split, 128], dtype)
212
                lse_local_split = T.alloc_local([1], accum_dtype)
213
214
215
216
217
                lse_logsum_local = T.alloc_local([1], accum_dtype)
                lse_max_local = T.alloc_fragment([128], accum_dtype)
                scale_local = T.alloc_local([1], accum_dtype)

                T.annotate_layout({
218
219
220
221
222
223
224
                    lse_logsum_local:
                        T.Fragment(lse_logsum_local.shape, forward_thread_fn=lambda i: i),
                    lse_max_local:
                        T.Fragment(lse_max_local.shape, forward_thread_fn=lambda i: i),
                    # lse_local: (local_id, thread_id)
                    lse_local:
                        T.Fragment(lse_local.shape, forward_fn=lambda i, j: (j, i)),
225
226
                })

227
                T.clear(lse_logsum_local)
228
                T.clear(o_accum_local)
229
230
                for k, j in T.Parallel(num_split, 128):
                    lse_local[k, j] = glse[bz, by, k]
231
232
                T.reduce_max(lse_local, lse_max_local, dim=0, clear=True)
                for k in T.Pipelined(num_split, num_stages=1):
233
234
                    lse_local_split[0] = glse[bz, by, k]
                    lse_logsum_local[0] += T.exp2(lse_local_split[0] - lse_max_local[0])
235
236
237
238
                lse_logsum_local[0] = T.log2(lse_logsum_local[0]) + lse_max_local[0]
                for k in T.serial(num_split):
                    for i in T.Parallel(dim):
                        po_local[i] = Output_partial[bz, by, k, i]
239
240
                    lse_local_split[0] = glse[bz, by, k]
                    scale_local[0] = T.exp2(lse_local_split[0] - lse_logsum_local[0])
241
242
243
244
245
246
                    for i in T.Parallel(dim):
                        o_accum_local[i] += po_local[i] * scale_local[0]
                for i in T.Parallel(dim):
                    Output[bz, by, i] = o_accum_local[i]

        @T.prim_func
247
        def flashattn_gqa_decode_split(
248
249
250
251
252
253
254
                Q: T.Tensor(shape_q, dtype),
                K: T.Tensor(shape_k, dtype),
                V: T.Tensor(shape_v, dtype),
                mask: T.Tensor([batch, seqlen_kv, groups], "uint8"),
                glse: T.Tensor([batch, heads, num_split], dtype),
                Output_partial: T.Tensor(part_shape, dtype),
                Output: T.Tensor(shape_o, dtype),
255
256
257
258
        ):
            flash_attn_split(Q, K, V, mask, glse, Output_partial)
            combine(glse, Output_partial, Output)

259
        @T.prim_func
260
        def flashattn_gqa_decode_no_split(
261
262
263
264
265
266
267
                Q: T.Tensor(shape_q, dtype),
                K: T.Tensor(shape_k, dtype),
                V: T.Tensor(shape_v, dtype),
                mask: T.Tensor([batch, seqlen_kv, groups], "uint8"),
                glse: T.Tensor([batch, heads, num_split], dtype),
                Output_partial: T.Tensor(part_shape, dtype),
                Output: T.Tensor(shape_o, dtype),
268
269
270
271
        ):
            flash_attn(Q, K, V, mask, Output)

        if num_split > 1:
272
            return flashattn_gqa_decode_split
273
        else:
274
            return flashattn_gqa_decode_no_split
275
276
277

    if tune:

278
        @autotune(configs=get_configs(), warmup=10, rep=10)
279
280
281
282
        @jit(
            out_idx=[6],
            supply_type=tilelang.TensorSupplyType.Auto,
            ref_prog=ref_program,
283
            max_mismatched_ratio=0.05)
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
        def kernel(block_N=None, block_H=None, num_split=None, num_stages=None, threads=None):
            return kernel_func(block_N, block_H, num_split, num_stages, threads)

        return kernel()
    else:

        def kernel(block_N, block_H, num_split, num_stages, threads):
            return kernel_func(block_N, block_H, num_split, num_stages, threads)

        return kernel


def ref_program(query, key, value, mask, glse, Output_partial):
    #     """
    #     Inputs:
    #     - query (Tensor): [batch, heads, dim]
    #     - key (Tensor): [batch, seqlen_kv, groups, dim]
    #     - value (Tensor): [batch, seqlen_kv, groups, dim]
    #     - mask (Tensor): [batch, seqlen_kv, groups]
    #     Outputs:
    #     - output (Tensor): [batch, heads, dim]
    #     """
    dim = query.shape[-1]
    num_head_groups = query.shape[1] // key.shape[2]
    scale = dim**0.5
    key = rearrange(key, 'b n h d -> b h n d')  # [batch_size, groups, seqlen_kv, dim]
    value = rearrange(value, 'b n h d -> b h n d')  # [batch_size, groups, seqlen_kv, dim]

    query = rearrange(
        query, 'b (h g) d -> b g h d',
        g=num_head_groups)  # [batch_size, num_head_groups, groups, dim]

    scores = einsum(
        query, key,
        'b g h d, b h s d -> b g h s')  # [batch_size, num_head_groups, groups, seqlen_kv]
    if mask is not None:
        mask = rearrange(mask, 'b s h -> b h s')
        mask = mask.unsqueeze(1)
        scores = scores.masked_fill(mask == 0, float('-inf'))

    attention = F.softmax(
        scores / scale, dim=-1)  # [batch_size, num_head_groups, groups, seqlen_kv]

    out = einsum(attention, value,
                 'b g h s, b h s d -> b g h d')  # [batch_size, num_head_groups, groups, dim]
    out = rearrange(out, 'b g h d -> b (h g) d')  # [batch_size, heads, dim]
    return out


def flash_split_ref(Q, K, V, mask):
334
    num_split = 16
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
    batch = Q.size(0)
    nheads = Q.size(1)
    groups = K.size(2)
    dim = Q.size(-1)
    block_N = 32
    seqlen_kv = K.size(1)
    num_head_groups = nheads // groups

    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    acc_s = torch.empty((batch, num_head_groups, groups, block_N), device="cuda", dtype=torch.float)
    acc_s_cast = torch.empty((batch, num_head_groups, groups, block_N),
                             device="cuda",
                             dtype=torch.float16)
    acc_o = torch.empty((batch, num_head_groups, groups, dim), device="cuda", dtype=torch.float)
    scores_max = torch.empty((batch, num_head_groups, groups), device="cuda", dtype=torch.float)
    scores_max_prev = torch.empty((batch, num_head_groups, groups),
                                  device="cuda",
                                  dtype=torch.float)
    scores_scale = torch.empty((batch, num_head_groups, groups), device="cuda", dtype=torch.float)
    scores_sum = torch.empty((batch, num_head_groups, groups), device="cuda", dtype=torch.float)
    logsum = torch.empty((batch, num_head_groups, groups), device="cuda", dtype=torch.float)
    gacc_o = torch.empty((num_split, batch, nheads, dim), device="cuda", dtype=torch.float)
    glogsum = torch.empty((num_split, batch, nheads), device="cuda", dtype=torch.float)

    Q_ = Q * scale
    Q_ = rearrange(Q_, 'b (h g) d -> b g h d', g=num_head_groups)

    for ks in range(num_split):
        acc_o.fill_(0)
        logsum.fill_(0)
        scores_max.fill_(float('-inf'))
        scores_max_prev.fill_(float('-inf'))
        for i in range(int((seqlen_kv // num_split) / block_N)):
            acc_s.fill_(0)
            acc_s = torch.einsum('bghd,bkhd->bghk', Q_,
                                 K[:, (seqlen_kv // num_split) * ks +
                                   i * block_N:(seqlen_kv // num_split) * ks +
                                   (i + 1) * block_N, :, :])  # [batch, nheads, block_N]
            if mask is not None:
                mask_local = mask[:, (seqlen_kv // num_split) * ks +
                                  i * block_N:(seqlen_kv // num_split) * ks + (i + 1) * block_N, :]
                mask_local = rearrange(mask_local, 'b s h -> b h s')
                mask_local = mask_local.unsqueeze(1)
                acc_s = acc_s.masked_fill(mask_local == 0, float('-inf'))
            scores_max_prev = scores_max
            scores_max = acc_s.max(dim=-1, keepdim=False).values  # [batch, nheads]
            scores_scale = torch.exp2(scores_max_prev - scores_max)  # [batch, nheads]
            acc_o *= scores_scale[:, :, :, None]
            acc_s = torch.exp2(acc_s - scores_max[:, :, :, None])
            acc_s_cast = acc_s.to(torch.float16)  # [batch, nheads, block_N]
            acc_o += torch.einsum(
                'bghk,bkhd->bghd', acc_s_cast,
                V[:, (seqlen_kv // num_split) * ks + i * block_N:(seqlen_kv // num_split) * ks +
                  (i + 1) * block_N, :, :])
            scores_sum = acc_s.sum(dim=-1, keepdim=False)
            logsum = logsum * scores_scale + scores_sum
        acc_o_out = rearrange(acc_o, 'b g h d->b (h g) d')
        logsum_out = rearrange(logsum, 'b g h->b (h g)')
        acc_o_out /= logsum_out[:, :, None]
        logsum_out = torch.log2(logsum_out) + rearrange(scores_max, 'b g h->b (h g)')
        gacc_o[ks, :, :, :] = acc_o_out
        glogsum[ks, :, :] = logsum_out

    return glogsum.to(torch.float16).permute(1, 2, 0), gacc_o.to(torch.float16).permute(1, 2, 0, 3)


def reduce_ref(Q, K, V, mask, glse, Output_partial):
402
    num_split = 16
403
404
405
406
407
408
409
410
411
412
413
414
415
416
    o = torch.empty_like(Output_partial[:, :, 0, :]).fill_(0)
    lse_logsum = torch.empty_like(glse[:, :, 0]).fill_(0)  # [batch, heads]
    lse_max = glse.max(dim=2, keepdim=False).values
    for ks in range(num_split):
        lse = glse[:, :, ks]
        lse_logsum += torch.exp2(lse - lse_max)
    lse_logsum = torch.log2(lse_logsum) + lse_max
    for ks in range(num_split):
        lse = glse[:, :, ks]
        scale = torch.exp2(lse - lse_logsum)  # [batch, heads]
        o += Output_partial[:, :, ks, :] * scale[:, :, None]
    return o.to(torch.float16)


417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
def ref_split_program(Q, K, V, mask, glse=None, Output_partial=None):
    glse_, Output_partial_ = flash_split_ref(Q, K, V, mask)
    return reduce_ref(Q, K, V, mask, glse_, Output_partial_)


def print_red_warning(msg):
    print(f"\033[91m{msg}\033[0m")


def calc_sim(x, y, name="tensor"):
    x, y = x.data.double(), y.data.double()
    denominator = (x * x + y * y).sum()
    if denominator == 0:
        print_red_warning(f'{name} all zero')
        return 1
    sim = 2 * (x * y).sum() / denominator
    return sim


def assert_similar(x, y, eps=1e-2, name="tensor", assert_=False, print_=True):
    sim = calc_sim(x, y, name)
    diff = 1. - sim
    if not (0 <= diff <= eps):
        print_red_warning(f'{name} Error: {diff}')
        if assert_:
            raise AssertionError(f'{name} Error: {diff}')
    else:
        if print_:
            print(f'passed: {name} diff={diff}')


448
449
450
451
452
453
454
def main(batch: int = 1,
         heads: int = 32,
         groups: int = 8,
         kv_seqlen: int = 8192,
         dim: int = 128,
         tune: bool = False):
    batch, heads, groups, kv_seqlen, dim = batch, heads, groups, kv_seqlen, dim
455
456
457
458
    qk_flops = 2 * batch * heads * kv_seqlen * dim
    pv_flops = 2 * batch * heads * kv_seqlen * dim
    total_flops = qk_flops + pv_flops

459
    if (not tune):
460
461
462
463
464
465
466
467
468
469
470
471
472

        def get_heuristic_config() -> dict:
            # Get CUDA device properties
            if not torch.cuda.is_available():
                raise RuntimeError("CUDA is not available")
            device = torch.cuda.current_device()
            sm_major, sm_minor = torch.cuda.get_device_capability(device)
            sm_version = sm_major * 10 + sm_minor
            print(f"CUDA device capability: {sm_version}")
            if sm_version == 89:
                return {
                    "block_N": 128,
                    "block_H": 64,
473
                    "num_split": 16,
474
475
                    "num_stages": 0,
                    "threads": 128
476
                }, sm_version
477
478
479
480
            else:
                return {
                    "block_N": 128,
                    "block_H": 64,
481
                    "num_split": 16,
482
483
                    "num_stages": 2,
                    "threads": 128
484
                }, sm_version
485

486
        config, sm_version = get_heuristic_config()
487
        program = flashattn(batch, heads, groups, kv_seqlen, dim, tune=tune)(**config)
488
489
490
491
492
        if sm_version == 90:
            kernel = tilelang.compile(
                program, out_idx=[6], pass_configs={"tl.disable_tma_lower": True})
        else:
            kernel = tilelang.compile(program, out_idx=[6])
493
        profiler = kernel.get_profiler(tensor_supply_type=tilelang.TensorSupplyType.Auto)
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509

        q = torch.randn(batch, heads, dim, device="cuda", dtype=torch.float16)
        k = torch.randn(batch, kv_seqlen, groups, dim, device="cuda", dtype=torch.float16)
        v = torch.randn(batch, kv_seqlen, groups, dim, device="cuda", dtype=torch.float16)
        mask = torch.randint(0, 2, (batch, kv_seqlen, groups), device="cuda", dtype=torch.uint8)
        glse = torch.empty(batch, heads, 16, device="cuda", dtype=torch.float16)
        Output_partial = torch.empty(batch, heads, 16, dim, device="cuda", dtype=torch.float16)
        o = kernel(q, k, v, mask, glse, Output_partial)
        o_ref = ref_program(q, k, v, mask, glse, Output_partial)
        o_ref_split = ref_split_program(q, k, v, mask, glse, Output_partial)

        assert_similar(o, o_ref)
        assert_similar(o_ref_split, o_ref)
        torch.testing.assert_close(o, o_ref, rtol=0.01, atol=0.01)
        torch.testing.assert_close(o_ref_split, o_ref, rtol=0.01, atol=0.01)

510
        profiler.assert_allclose(ref_program, rtol=0.01, atol=0.01)
511
        profiler.assert_allclose(ref_split_program, rtol=0.01, atol=0.01)
512
        print("All checks pass.")
513
        latency = profiler.do_bench(ref_program, warmup=500)
514
515
        print("Ref: {:.2f} ms".format(latency))
        print("Ref: {:.2f} TFlops".format(total_flops / latency * 1e-9))
516
        latency = profiler.do_bench(warmup=500)
517
518
519
        print("Tile-lang: {:.2f} ms".format(latency))
        print("Tile-lang: {:.2f} TFlops".format(total_flops / latency * 1e-9))
    else:
520
        best_result = flashattn(batch, heads, groups, kv_seqlen, dim, tune=tune)
521
522
523
        best_latency = best_result.latency
        best_config = best_result.config
        ref_latency = best_result.ref_latency
524
525
526
        print(f"Best latency: {best_latency}")
        print(f"Best TFlops: {total_flops / best_latency * 1e-9}")
        print(f"Best config: {best_config}")
527
528
529
530
531
532
533
534
535
536
537
538
539
        print(f"Ref latency: {ref_latency}")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=1, help='batch size')
    parser.add_argument('--heads', type=int, default=32, help='heads')
    parser.add_argument('--groups', type=int, default=8, help='groups')
    parser.add_argument('--kv_seqlen', type=int, default=8192, help='kv sequence length')
    parser.add_argument('--dim', type=int, default=128, help='dim')
    parser.add_argument('--tune', action='store_true', help='tune configs')
    args = parser.parse_args()
    main(args.batch, args.heads, args.groups, args.kv_seqlen, args.dim, args.tune)