"src/vscode:/vscode.git/clone" did not exist on "a9e5d73c4b3209b81787579049e63dad549fdb8c"
sparse_mla_fwd_pipelined.py 20.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
# ruff: noqa
import torch
import tilelang
from tilelang import language as T
from tilelang.engine.callback import register_cuda_postproc_callback
import argparse


@tilelang.jit(
    out_idx=[-2, -1],
    compile_flags=[
        "-O3", "-Wno-deprecated-declarations", "-U__CUDA_NO_HALF_OPERATORS__",
        "-U__CUDA_NO_HALF_CONVERSIONS__", "-U__CUDA_NO_HALF2_OPERATORS__",
        "-U__CUDA_NO_BFLOAT16_CONVERSIONS__", "--expt-relaxed-constexpr", "--expt-extended-lambda",
        "--ptxas-options=-v,--register-usage-level=10", "-DNDEBUG"
    ],
)
def sparse_mla_fwd(
    batch,
    seq_len,
    seq_len_kv,
    heads,
    dim,
    tail_dim,
    topk,
    kv_stride,
    kv_group=1,
    sm_scale=None,
    is_causal=True,
    CP0=True,
    block_I=64,
    num_stages=0,
    threads=384,
):
    assert dim == tilelang.math.next_power_of_2(
        dim), f"haven't check padding correctness yet, dim={dim}"
    assert tail_dim == tilelang.math.next_power_of_2(
        tail_dim), f"haven't check padding correctness yet, dim={tail_dim}"
    assert is_causal == True, 'non-casual is not supported'
    assert topk % block_I == 0, 'otherwise will load some index=0 thus causing wrong kv to be loaded'
    if sm_scale is None:
        sm_scale = (1.0 / (dim + tail_dim))**0.5 * 1.44269504  # log2(e)
    else:
        sm_scale = sm_scale * 1.44269504  # log2(e)

    head_kv = heads // kv_group
    q_shape = [batch, seq_len, heads, dim + tail_dim]
    kv_shape = [batch, seq_len_kv, kv_group, dim + tail_dim]
    o_shape = [batch, seq_len, heads, dim]
    indices_shape = [batch, seq_len, kv_group, topk]
    lse_shape = [batch, seq_len, heads]
    indices_dtype = "int32"
    dtype = "bfloat16"
    accum_dtype = "float"

    G = kv_group
    H = head_kv
    padded_H = max(tilelang.math.next_power_of_2(head_kv), 16)
    if padded_H != H:
        assert kv_group == 1, 'here we solve the H padding automatically, other wise you should handle Q copy and Output copy with your mask (when kv_group == 1, use g_i * padded_H:(g_i+1) * padded_H would be handled automatically)'
    BI = block_I
    NI = tilelang.cdiv(topk, block_I)
    assert NI % 2 == 0, 'NI should be a multiple of 2'
    D = dim
    D_tail = tail_dim
    KV_stride = kv_stride
    if head_kv > 64:
        assert head_kv % 64 == 0, 'head_kv should be a multiple of 64'
        REPLICATE_H = head_kv // 64
    else:
        REPLICATE_H = 1

    H_per_block = padded_H if REPLICATE_H == 1 else 64

    @T.prim_func
    def main(
            Q: T.Tensor(q_shape, dtype),  # type: ignore
            KV: T.Tensor(kv_shape, dtype),  # type: ignore
            Indices: T.Tensor(indices_shape, indices_dtype),  # type: ignore
            q_start_index_s: T.Tensor(1, indices_dtype),
            Output: T.Tensor(o_shape, dtype),  # type: ignore
            Lse: T.Tensor(lse_shape, accum_dtype),  # type: ignore
    ):
        with T.Kernel(
            (seq_len - kv_stride + 1 if CP0 else seq_len) * REPLICATE_H,
                batch,
                kv_group,
                threads=threads) as (bx, by, bz):
            Q_shared_l = T.alloc_shared([H_per_block, D // 2], dtype)
            Q_shared_r = T.alloc_shared([H_per_block, D // 2], dtype)
            Q_tail_shared = T.alloc_shared([H_per_block, D_tail], dtype)
            KV_shared_0_l = T.alloc_shared([BI, D // 2], dtype)
            KV_shared_0_r = T.alloc_shared([BI, D // 2], dtype)
            KV_shared_1_l = T.alloc_shared([BI, D // 2], dtype)
            KV_shared_1_r = T.alloc_shared([BI, D // 2], dtype)
            K_tail_shared_0 = T.alloc_shared([BI, D_tail], dtype)
            K_tail_shared_1 = T.alloc_shared([BI, D_tail], dtype)
            O_shared_l = Q_shared_l
            O_shared_r = Q_shared_r
            is_kv_valid = T.alloc_shared([BI], "bool", scope="shared")

            acc_o_l = T.alloc_fragment([H_per_block, D // 2], accum_dtype)
            acc_o_r = T.alloc_fragment([H_per_block, D // 2], accum_dtype)
            acc_s = T.alloc_fragment([H_per_block, BI], accum_dtype)
            S_shared = T.alloc_shared([H_per_block, BI], dtype)
            sumexp = T.alloc_fragment([H_per_block], accum_dtype)
            sum_exp_shared = T.alloc_shared([H_per_block], accum_dtype)
            sumexp_i = T.alloc_fragment([H_per_block], accum_dtype)
            alpha_shared = T.alloc_shared([H_per_block], accum_dtype, scope="shared")
            alpha_local = T.alloc_fragment([H_per_block], accum_dtype)
            m_i = T.alloc_fragment([H_per_block], accum_dtype)
            m_i_prev = T.alloc_fragment([H_per_block], accum_dtype)
            indices_local = T.alloc_local([1], indices_dtype)

            # TODO: Multi buffer
            bar_q = T.alloc_barrier(arrive_count=384)
            bar_k_0_ready = T.alloc_barrier(arrive_count=128)
            bar_k_1_ready = T.alloc_barrier(arrive_count=128)
            bar_k_0_free = T.alloc_barrier(arrive_count=256)
            bar_k_1_free = T.alloc_barrier(arrive_count=256)
            bar_sScale_and_sS_ready = T.alloc_barrier(arrive_count=256)
            bar_sScale_and_sS_free = T.alloc_barrier(arrive_count=256)

            b_i, g_i = by, bz
            s_i = (bx + (KV_stride - 1 if CP0 else 0)) if REPLICATE_H == 1 else (
                bx // REPLICATE_H + (KV_stride - 1 if CP0 else 0))
            q_i = q_start_index_s[0] + s_i
            max_kv_i = (q_i + 1 - KV_stride) // KV_stride

            H0 = g_i * padded_H + (0 if REPLICATE_H == 1 else (bx % REPLICATE_H) * 64)
            H1 = H0 + H_per_block

            tx = T.get_thread_binding()

            T.copy(Q[b_i, s_i, H0:H1, 0:D // 2], Q_shared_l)
            T.copy(Q[b_i, s_i, H0:H1, D // 2:D], Q_shared_r)
            T.copy(Q[b_i, s_i, H0:H1, D:], Q_tail_shared)
            T.barrier_arrive(bar_q)

            if tx < 128:
                T.set_max_nreg(240, 1)
                T.fill(sumexp, 0)
                T.fill(m_i, -2**30)  # avoid -inf - inf to cause nan
                T.fill(acc_o_l, 0)
                T.barrier_wait(bar_q, 0)

                for i_i in T.serial(T.ceildiv(NI, 2)):

                    # Buffer 0
                    T.barrier_wait(bar_k_0_ready[0], (i_i & 1))

                    for h_i, bi_i in T.Parallel(H_per_block, BI):
                        acc_s[h_i, bi_i] = T.if_then_else(is_kv_valid[bi_i], 0,
                                                          -T.infinity(acc_s.dtype))
                    T.gemm(Q_shared_l, KV_shared_0_l, acc_s, transpose_B=True, wg_wait=-1)
                    T.gemm(Q_shared_r, KV_shared_0_r, acc_s, transpose_B=True, wg_wait=-1)
                    T.gemm(Q_tail_shared, K_tail_shared_0, acc_s, transpose_B=True, wg_wait=-1)

                    T.wait_wgmma(0)

                    if i_i != 0:
                        T.barrier_arrive(bar_sScale_and_sS_free)
                        T.barrier_wait(bar_sScale_and_sS_free, ((i_i * 2) & 1) ^ 1)

                    T.copy(m_i, m_i_prev)
                    T.reduce_max(acc_s, m_i, dim=1, clear=False)
                    for h_i in T.Parallel(H_per_block):
                        alpha_local[h_i] = T.exp2((m_i_prev[h_i] - m_i[h_i]) * sm_scale)
                    for h_i, bi_i in T.Parallel(H_per_block, BI):
                        acc_s[h_i, bi_i] = T.exp2(acc_s[h_i, bi_i] * sm_scale - m_i[h_i] * sm_scale)
                    T.reduce_sum(acc_s, sumexp_i, dim=1)  # is this a accumulate operator?
                    for h_i in T.Parallel(H_per_block):
                        sumexp[h_i] = sumexp[h_i] * alpha_local[h_i] + sumexp_i[h_i]
                    for h_i, d_i in T.Parallel(H_per_block, D // 2):
                        acc_o_l[h_i, d_i] *= alpha_local[h_i]
                    T.copy(alpha_local, alpha_shared)

                    T.copy(acc_s, S_shared)
                    T.gemm(S_shared, KV_shared_0_l, acc_o_l)

                    T.barrier_arrive(bar_sScale_and_sS_ready)
                    T.barrier_arrive(bar_k_0_free[0])

                    # Buffer 1
                    T.barrier_wait(bar_k_1_ready[0], (i_i & 1))

                    for h_i, bi_i in T.Parallel(H_per_block, BI):
                        acc_s[h_i, bi_i] = T.if_then_else(is_kv_valid[bi_i], 0,
                                                          -T.infinity(acc_s.dtype))
                    T.gemm(Q_shared_l, KV_shared_1_l, acc_s, transpose_B=True, wg_wait=-1)
                    T.gemm(Q_shared_r, KV_shared_1_r, acc_s, transpose_B=True, wg_wait=-1)
                    T.gemm(Q_tail_shared, K_tail_shared_1, acc_s, transpose_B=True, wg_wait=-1)

                    T.wait_wgmma(0)

                    T.barrier_arrive(bar_sScale_and_sS_free)
                    T.barrier_wait(bar_sScale_and_sS_free, ((i_i * 2 + 1) & 1) ^ 1)

                    T.copy(m_i, m_i_prev)
                    T.reduce_max(acc_s, m_i, dim=1, clear=False)
                    for h_i in T.Parallel(H_per_block):
                        alpha_local[h_i] = T.exp2((m_i_prev[h_i] - m_i[h_i]) * sm_scale)
                    for h_i, bi_i in T.Parallel(H_per_block, BI):
                        acc_s[h_i, bi_i] = T.exp2(acc_s[h_i, bi_i] * sm_scale - m_i[h_i] * sm_scale)
                    T.reduce_sum(acc_s, sumexp_i, dim=1)  # is this a accumulate operator?
                    for h_i in T.Parallel(H_per_block):
                        sumexp[h_i] = sumexp[h_i] * alpha_local[h_i] + sumexp_i[h_i]
                    for h_i, d_i in T.Parallel(H_per_block, D // 2):
                        acc_o_l[h_i, d_i] *= alpha_local[h_i]
                    T.copy(alpha_local, alpha_shared)

                    T.copy(acc_s, S_shared)
                    T.gemm(S_shared, KV_shared_1_l, acc_o_l)

                    T.barrier_arrive(bar_sScale_and_sS_ready)
                    T.barrier_arrive(bar_k_1_free[0])

                # Rescale
                for h_i in T.Parallel(H_per_block):
                    sum_exp_shared[h_i] = sumexp[h_i]
                for h_i, d_i in T.Parallel(H_per_block, D // 2):
                    acc_o_l[h_i, d_i] /= sumexp[h_i]
                for h_i in T.Parallel(H_per_block):
                    sumexp[h_i] = T.log2(sumexp[h_i]) + m_i[h_i] * sm_scale
                T.copy(acc_o_l, O_shared_l)
                T.copy(O_shared_l, Output[b_i, s_i, H0:H1, 0:D // 2])

            elif tx >= 128 and tx < 256:
                T.set_max_nreg(168, 1)
                T.fill(acc_o_r, 0)
                for i_i in T.serial(T.ceildiv(NI, 2)):
                    # Buffer 0
                    T.barrier_arrive(bar_sScale_and_sS_ready)
                    T.barrier_wait(bar_sScale_and_sS_ready, ((i_i * 2) & 1))
                    for h_i, d_i in T.Parallel(H_per_block, D // 2):
                        acc_o_r[h_i, d_i] *= alpha_shared[h_i]
                    T.gemm(S_shared, KV_shared_0_r, acc_o_r)
                    T.barrier_arrive(bar_k_0_free[0])
                    T.barrier_arrive(bar_sScale_and_sS_free)

                    # Buffer 1
                    T.barrier_arrive(bar_sScale_and_sS_ready)
                    T.barrier_wait(bar_sScale_and_sS_ready, ((i_i * 2 + 1) & 1))
                    for h_i, d_i in T.Parallel(H_per_block, D // 2):
                        acc_o_r[h_i, d_i] *= alpha_shared[h_i]
                    T.gemm(S_shared, KV_shared_1_r, acc_o_r)
                    T.barrier_arrive(bar_k_1_free[0])
                    if i_i != T.ceildiv(NI, 2) - 1:
                        T.barrier_arrive(bar_sScale_and_sS_free)

                # Rescale
                for h_i, d_i in T.Parallel(H_per_block, D // 2):
                    acc_o_r[h_i, d_i] /= sum_exp_shared[h_i]

                T.copy(acc_o_r, O_shared_r)
                T.copy(O_shared_r, Output[b_i, s_i, H0:H1, D // 2:D])
            elif tx >= 256:
                # producer
                T.set_max_nreg(80, 0)
                for i_i in T.serial(T.ceildiv(NI, 2)):
                    # Buffer 0
                    T.barrier_wait(bar_k_0_free[0], ((i_i & 1) ^ 1))
                    for r in T.serial(4):
                        indices_local[0] = Indices[b_i, s_i, g_i,
                                                   (i_i * 2) * BI + r * 16 + (tx - 256) // 8]
                        is_kv_valid[r * 16 + (tx - 256) // 8] = indices_local[0] <= max_kv_i
                        if is_kv_valid[r * 16 + (tx - 256) // 8]:
                            with T.attr("default", "async_scope", 1):
                                for u in T.serial(4):
                                    for v in T.vectorized(8):
                                        KV_shared_0_l[r * 16 + (tx - 256) // 8,
                                                      64 * u + (tx - 256) % 8 * 8 +
                                                      v] = KV[b_i, indices_local[0], g_i,
                                                              64 * u + (tx - 256) % 8 * 8 + v]
                                        KV_shared_0_r[r * 16 + (tx - 256) // 8,
                                                      64 * u + (tx - 256) % 8 * 8 +
                                                      v] = KV[b_i, indices_local[0], g_i, D // 2 +
                                                              64 * u + (tx - 256) % 8 * 8 + v]
                            with T.attr("default", "async_scope", 1):
                                for v in T.vectorized(8):
                                    K_tail_shared_0[r * 16 + (tx - 256) // 8, (tx - 256) % 8 * 8 +
                                                    v] = KV[b_i, indices_local[0], g_i,
                                                            D + (tx - 256) % 8 * 8 + v]
                    T.cp_async_barrier_noinc(bar_k_0_ready[0])

                    # Buffer 1
                    T.barrier_wait(bar_k_1_free[0], ((i_i & 1) ^ 1))
                    for r in T.serial(4):
                        indices_local[0] = Indices[b_i, s_i, g_i,
                                                   (i_i * 2 + 1) * BI + r * 16 + (tx - 256) // 8]
                        is_kv_valid[r * 16 + (tx - 256) // 8] = indices_local[0] <= max_kv_i
                        if is_kv_valid[r * 16 + (tx - 256) // 8]:
                            with T.attr("default", "async_scope", 1):
                                for u in T.serial(4):
                                    for v in T.vectorized(8):
                                        KV_shared_1_l[r * 16 + (tx - 256) // 8,
                                                      64 * u + (tx - 256) % 8 * 8 +
                                                      v] = KV[b_i, indices_local[0], g_i,
                                                              64 * u + (tx - 256) % 8 * 8 + v]
                                        KV_shared_1_r[r * 16 + (tx - 256) // 8,
                                                      64 * u + (tx - 256) % 8 * 8 +
                                                      v] = KV[b_i, indices_local[0], g_i, D // 2 +
                                                              64 * u + (tx - 256) % 8 * 8 + v]
                            with T.attr("default", "async_scope", 1):
                                for v in T.vectorized(8):
                                    K_tail_shared_1[r * 16 + (tx - 256) // 8, (tx - 256) % 8 * 8 +
                                                    v] = KV[b_i, indices_local[0], g_i,
                                                            D + (tx - 256) % 8 * 8 + v]
                    T.cp_async_barrier_noinc(bar_k_1_ready[0])

    return main


def sparse_mla_fwd_interface(q,
                             kv,
                             indices,
                             q_start_index_s,
                             kv_stride,
                             sm_scale=None,
                             is_casual=True,
                             return_kernel=False,
                             print_kernel=False):
    assert q.is_contiguous() and kv.is_contiguous() and indices.is_contiguous()
    batch, seq_len, heads, dim_plus_tail_dim = q.shape
    _, seq_len_kv, kv_group, _ = kv.shape

    assert dim_plus_tail_dim == 576, 'you should assign dim otherwise'
    dim = 512

    assert kv.shape[-1] == dim_plus_tail_dim
    tail_dim = dim_plus_tail_dim - dim
    assert kv.shape[0] == batch
    _, _, _, topk = indices.shape
    assert indices.shape == (batch, seq_len, kv_group, topk)

    if q_start_index_s != 0:
        assert q_start_index_s > kv_stride, "If it is because each cp has too short length, you should fix the logic involving CP0 (cp_rank == 0), to make sure q with pos < KV_Stride - 1 is masked (or you may just ignore how this is handled if nan in these q's Out would not effect others, which is reported to be likely to happen by wangding)"
    CP0 = q_start_index_s == 0

    kernel = sparse_mla_fwd(batch, seq_len, seq_len_kv, heads, dim, tail_dim, topk, kv_stride,
                            kv_group, sm_scale, is_casual, CP0)
    if print_kernel:
        print(kernel.get_kernel_source())
    out, lse = kernel(q, kv, indices,
                      torch.tensor([q_start_index_s], dtype=torch.int32, device="cuda"))
    if return_kernel:
        return kernel
    if q_start_index_s == 0 and kv_stride > 1:
        out[:, :kv_stride - 1, :, :] = 0
    return out, lse


def ref_sparse_mla_fwd_interface(q,
                                 kv,
                                 indices,
                                 q_start_index_s,
                                 kv_stride=4,
                                 sm_scale=None,
                                 is_casual=True):
    q = q.float()
    kv = kv.float()
    indices = indices.transpose(1, 2)
    b, sq, h, dim_q = q.shape
    b, sk, g, _ = kv.shape
    if q_start_index_s is None:
        q_start_index_s = sk * kv_stride - sq

    assert kv.shape[-1] == 576, 'you should assign dim otherwise'
    dim = 512
    k = kv
    v = kv[..., :dim]

    b, _, _, dim_v = v.shape
    num_kv_per_index = 1
    g_index = g
    h_index = h // g
    compressed_casual_mask = torch.arange(
        q_start_index_s, sq + q_start_index_s, dtype=torch.int32,
        device="cuda").view(-1, 1) >= torch.arange(
            kv_stride - 1, sk * kv_stride, kv_stride, dtype=torch.int32, device="cuda").view(1, -1)

    mask = q.new_zeros(b, g_index, sq, sk + 1, dtype=torch.bool).scatter(3, indices.long(), 1)
    mask = mask[..., :-1]
    mask = mask & compressed_casual_mask.view(1, 1, sq, sk)
    mask[:, :, :kv_stride - 1, 0] = True
    mask = mask.view(b, g_index, 1, sq, sk)

    q = q.view(b, sq, g, -1, dim_q)
    score = torch.einsum("bmghd,bngd->bghmn", q, k)
    sm_scale = dim_q**-0.5 if sm_scale is None else sm_scale
    score = score.masked_fill(~mask, float("-inf")).mul(sm_scale)
    p = score.softmax(dim=-1)
    p = p.view(b, g_index, h_index, -1, sq, sk)
    p = p.view(b, g, -1, sq, sk)
    o = torch.einsum("bghmn,bngd->bmghd", p.type(v.dtype), v)
    o = o.reshape(b, sq, h, dim_v)
    return o.to(torch.bfloat16)


def test_sparse_mla_fwd(test_correctness=False):
    KV_stride = 1
    if test_correctness:
        B, S, SKV, H, HKV, DQK, DV, topk, dtype = 1, 1024, 2048, 128, 1, 576, 512, 2048, torch.bfloat16
        q_start_s_index = 1024
    else:
        B, S, SKV, H, HKV, DQK, DV, topk, dtype = 1, 4096, 8192, 128, 1, 576, 512, 2048, torch.bfloat16
        q_start_s_index = 4096 * 64

    torch.random.manual_seed(0)
    q = torch.randn((B, S, H, DQK), dtype=dtype, device='cuda').requires_grad_(True) / 10
    kv = torch.randn((B, SKV, HKV, DQK), dtype=dtype, device='cuda').requires_grad_(True) / 10
    q_start_s_index_t = torch.tensor([q_start_s_index], dtype=torch.int32, device="cuda")

    q.clamp_(-10, 10)
    kv.clamp_(-10, 10)

    indices = torch.full((B, S, HKV, topk), SKV, dtype=torch.int32, device='cuda')
    for b in range(B):
        for t in range(S):
            for h in range(HKV):
                i_i = torch.randperm(min(max(1, ((t + q_start_s_index) // KV_stride)), SKV))[:topk]
                indices[b, t, h, :len(i_i)] = i_i

    kernel = sparse_mla_fwd_interface(
        q, kv, indices, q_start_s_index, KV_stride, return_kernel=True, print_kernel=True)

    def fn():
        out, lse = kernel(q, kv, indices, q_start_s_index_t)
        if q_start_s_index == 0 and kv_stride > 1:
            out[:, :kv_stride - 1, :, :] = 0
        return out, lse

    tl_out, tl_lse = fn()
    ref_out = ref_sparse_mla_fwd_interface(q, kv, indices, q_start_s_index, KV_stride)
    print(f"tl_out: {tl_out}")
    print(f"ref_out: {ref_out}")

    torch.testing.assert_close(tl_out, ref_out, rtol=1e-3, atol=1e-3)

    from tilelang.profiler import do_bench
    ms = do_bench(
        fn,
        rep=10,
        warmup=10,
    )
    print(f"Average time: {ms:.3f} ms")
    print(f'fwd io bandwidth = ', (B * S * DQK * topk * 2) / (ms * 1e-3) / 1e12)
    print(f'fwd tflops = ', (B * S * (DQK + DV) * topk * 2 * H) / (ms * 1e-3) / 1e12)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--test_correctness", action="store_true")
    args = parser.parse_args()
    test_sparse_mla_fwd(args.test_correctness)