example_sparse_gqa_decode_varlen.py 22.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
import torch
import torch.nn.functional as F
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
from einops import rearrange, einsum
import argparse
import time
import math
from heuristic import num_splits_heuristic

torch.manual_seed(0)
tilelang.disable_cache()


def flashattn(batch, heads, heads_kv, dim, dim_v):
    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    dtype = "float16"
    accum_dtype = "float"
    kv_group_num = heads // heads_kv

    def kernel_func(block_N, block_H, num_split, num_stages, threads, max_cache_seqlen,
                    max_selected_blocks):
        shape_q = [batch, heads, dim]
        shape_k = [batch, max_cache_seqlen, heads_kv, dim]
        shape_v = [batch, max_cache_seqlen, heads_kv, dim_v]
        shape_indices = [batch, heads_kv, max_selected_blocks]
        shape_o = [batch, heads, dim_v]
        part_shape = [batch, heads, num_split, dim_v]
        valid_block_H = min(block_H, kv_group_num)

        @T.macro
        def flash_attn_split(
                Q: T.Tensor(shape_q, dtype),
                K: T.Tensor(shape_k, dtype),
                V: T.Tensor(shape_v, dtype),
                block_indices: T.Tensor(shape_indices, "int32"),
                cache_seqlens: T.Tensor([batch], "int32"),
                # actual_num_blocks: T.Tensor([batch], "int32"),
                glse: T.Tensor([batch, heads, num_split], accum_dtype),
                Output_partial: T.Tensor(part_shape, accum_dtype),
        ):
            with T.Kernel(
                    batch, heads // valid_block_H, num_split, threads=threads) as (bx, by, bz):
                Q_shared = T.alloc_shared([block_H, dim], dtype)
                K_shared = T.alloc_shared([block_N, dim], dtype)
                V_shared = T.alloc_shared([block_N, dim_v], dtype)
                acc_s = T.alloc_fragment([block_H, block_N], accum_dtype)
                acc_s_cast = T.alloc_fragment([block_H, block_N], dtype)
                acc_o = T.alloc_fragment([block_H, dim_v], accum_dtype)

                scores_max = T.alloc_fragment([block_H], accum_dtype)
                scores_max_prev = T.alloc_fragment([block_H], accum_dtype)
                scores_scale = T.alloc_fragment([block_H], accum_dtype)
                scores_sum = T.alloc_fragment([block_H], accum_dtype)
                logsum = T.alloc_fragment([block_H], accum_dtype)
                has_valid_block = T.alloc_var("bool")
                # num_blocks = T.alloc_local([1], "int32")

                bid = bx
                hid = by
                sid = bz
                cur_kv_head = hid // (kv_group_num // valid_block_H)

                T.copy(Q[bid, hid * valid_block_H:hid * valid_block_H + block_H, :], Q_shared)
                T.fill(acc_o, 0)
                T.fill(logsum, 0)
                T.fill(scores_max, -T.infinity(accum_dtype))
                # num_blocks = actual_num_blocks[bid]
                num_blocks = max_selected_blocks
                blocks_per_split = T.floordiv(num_blocks, num_split)
                remaining_blocks = T.floormod(num_blocks, num_split)
                loop_range = (blocks_per_split + T.if_then_else(sid < remaining_blocks, 1, 0))
                start = blocks_per_split * sid + T.min(sid, remaining_blocks)
                has_valid_block = False
                # if (start < num_blocks):
                for k in T.Pipelined(loop_range, num_stages=num_stages):
                    i_s = block_indices[bid, cur_kv_head, start + k]
                    if i_s >= 0:
                        has_valid_block = True
                        T.copy(K[bid, i_s * block_N:(i_s + 1) * block_N, cur_kv_head, :], K_shared)
                        T.clear(acc_s)
                        T.gemm(
                            Q_shared,
                            K_shared,
                            acc_s,
                            transpose_B=True,
                            policy=T.GemmWarpPolicy.FullRow)
                        if k == 0:  # assume block_indices is sorted in reverse order, otherwise, remove this if condition
                            for i, j in T.Parallel(block_H, block_N):
                                acc_s[i,
                                      j] = T.if_then_else(i_s * block_N + j >= cache_seqlens[bid],
                                                          -T.infinity(accum_dtype), acc_s[i, j])
                        T.copy(scores_max, scores_max_prev)
                        T.fill(scores_max, -T.infinity(accum_dtype))
                        T.reduce_max(acc_s, scores_max, dim=1, clear=False)
                        for i in T.Parallel(block_H):
                            scores_scale[i] = T.exp2(scores_max_prev[i] * scale -
                                                     scores_max[i] * scale)
                        for i, j in T.Parallel(block_H, block_N):
                            acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                        T.reduce_sum(acc_s, scores_sum, dim=1)
                        for i in T.Parallel(block_H):
                            logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
                        T.copy(acc_s, acc_s_cast)
                        for i, j in T.Parallel(block_H, dim_v):
                            acc_o[i, j] *= scores_scale[i]
                        T.copy(V[bid, i_s * block_N:(i_s + 1) * block_N, cur_kv_head, :], V_shared)
                        T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
                if has_valid_block:
                    for i, j in T.Parallel(block_H, dim_v):
                        acc_o[i, j] /= logsum[i]

                    for i in T.Parallel(block_H):
                        logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale

                for i in T.Parallel(block_H):
                    if i < valid_block_H:
                        glse[bid, hid * valid_block_H + i, sid] = logsum[i]

                for i, j in T.Parallel(block_H, dim_v):
                    if i < valid_block_H:
                        Output_partial[bid, hid * valid_block_H + i, sid, j] = acc_o[i, j]

        @T.macro
        def combine(
                glse: T.Tensor([batch, heads, num_split], accum_dtype),
                Output_partial: T.Tensor(part_shape, accum_dtype),
                Output: T.Tensor(shape_o, dtype),
        ):
            with T.Kernel(heads, batch, threads=128) as (by, bz):
                po_local = T.alloc_fragment([dim_v], accum_dtype)
                o_accum_local = T.alloc_fragment([dim_v], accum_dtype)
                lse_local_split = T.alloc_local([1], accum_dtype)
                lse_logsum_local = T.alloc_local([1], accum_dtype)
                lse_max_local = T.alloc_local([1], accum_dtype)
                scale_local = T.alloc_local([1], accum_dtype)

                T.annotate_layout({
                    lse_logsum_local:
                        T.Fragment(lse_logsum_local.shape, forward_thread_fn=lambda i: i),
                })

                T.clear(lse_logsum_local)
                T.clear(o_accum_local)
                lse_max_local[0] = -T.infinity(accum_dtype)
                for k in T.serial(num_split):
                    lse_max_local[0] = T.max(lse_max_local[0], glse[bz, by, k])
                for k in T.Pipelined(num_split, num_stages=1):
                    lse_local_split[0] = glse[bz, by, k]
                    lse_logsum_local[0] += T.exp2(lse_local_split[0] - lse_max_local[0])
                lse_logsum_local[0] = T.log2(lse_logsum_local[0]) + lse_max_local[0]
                for k in T.serial(num_split):
                    for i in T.Parallel(dim_v):
                        po_local[i] = Output_partial[bz, by, k, i]
                    lse_local_split[0] = glse[bz, by, k]
                    scale_local[0] = T.exp2(lse_local_split[0] - lse_logsum_local[0])
                    for i in T.Parallel(dim_v):
                        o_accum_local[i] += po_local[i] * scale_local[0]
                for i in T.Parallel(dim_v):
                    Output[bz, by, i] = o_accum_local[i]

        @T.prim_func
        def main(
                Q: T.Tensor(shape_q, dtype),
                K: T.Tensor(shape_k, dtype),
                V: T.Tensor(shape_v, dtype),
                block_indices: T.Tensor(shape_indices, "int32"),
                cache_seqlens: T.Tensor([batch], "int32"),
                # actual_num_blocks: T.Tensor([batch], "int32"),
                glse: T.Tensor([batch, heads, num_split], accum_dtype),
                Output_partial: T.Tensor(part_shape, accum_dtype),
                Output: T.Tensor(shape_o, dtype),
        ):
            # flash_attn_split(Q, K, V, block_indices, cache_seqlens, actual_num_blocks, glse, Output_partial)
            flash_attn_split(Q, K, V, block_indices, cache_seqlens, glse, Output_partial)
            combine(glse, Output_partial, Output)

        return main

    return kernel_func


class SparseFlashAttn(torch.nn.Module):

    def __init__(self, batch, heads, heads_kv, dim, dim_v, block_size):
        super(SparseFlashAttn, self).__init__()
        self.batch = batch
        self.heads = heads
        self.heads_kv = heads_kv
        self.dim = dim
        self.dim_v = dim_v
        self.block_size = block_size

        self.block_H = 64

        program = flashattn(batch, heads, heads_kv, dim, dim_v)(
            block_N=block_size,
            block_H=self.block_H,
            num_split=T.symbolic("num_split"),
            num_stages=2,
            threads=128,
            max_cache_seqlen=T.symbolic("max_cache_seqlen"),
            max_selected_blocks=T.symbolic("max_selected_blocks")
            # max_selected_blocks=52
        )

        self.kernel = tilelang.compile(
            program, out_idx=-1, target='cuda', execution_backend="cython")

        props = torch.cuda.get_device_properties(torch.device("cuda:0"))
        self.num_sm = props.multi_processor_count

    def forward(self, query, key, value, block_indices, cache_seqlens):
        batch = self.batch
        heads = self.heads
        heads_kv = self.heads_kv
        dim_v = self.dim_v
        block_size = self.block_size
        max_selected_blocks = block_indices.shape[-1]

        # Compute static scheduling parameters
        num_m_blocks = 1 * (heads // heads_kv + self.block_H - 1) // self.block_H
        num_n_blocks = max_selected_blocks
        size_one_kv_head = max_selected_blocks * block_size * (dim + dim_v) * 2
        total_mblocks = batch * heads_kv * num_m_blocks
        # num_sm = 132
        num_sm = self.num_sm

        num_split = num_splits_heuristic(
            total_mblocks,
            num_sm,
            num_n_blocks,
            num_m_blocks,
            size_one_kv_head,
            is_causal_or_local=True,
            max_splits=128)

        # Function to compile
        # def compute_actual_num_blocks(block_indices):
        #     actual_num_blocks = torch.sum(block_indices != -1, dim=-1).to(torch.int32)
        #     actual_num_blocks = actual_num_blocks[:, 0]  # [batch]
        #     return actual_num_blocks
        # compiled_fn = torch.compile(compute_actual_num_blocks)
        # actual_num_blocks = compiled_fn(block_indices)
        glse = torch.empty((batch, heads, num_split), dtype=torch.float32, device='cuda')
        output_partial = torch.empty((batch, heads, num_split, dim_v),
                                     dtype=torch.float32,
                                     device='cuda')

        # output = self.kernel(
        #     query, key, value, block_indices, cache_seqlens,
        #     actual_num_blocks, glse, output_partial
        # )
        output = self.kernel(query, key, value, block_indices, cache_seqlens, glse, output_partial)
        return output


def sparse_gqa_decode_varlen_indice(query, key, value, block_indices, cache_seqlens,
                                    max_cache_seqlen, block_size):
    """
    Args:
        query: [batch, heads, dim]
        key: [batch, max_cache_seqlen, heads_kv, dim]
        value: [batch, max_cache_seqlen, heads_kv, dim_v]
        block_indices: [batch, heads_kv, max_selected_blocks], indices of selected blocks, -1 for padding
        cache_seqlens: [batch], sequence lengths of the kvcache
        max_cache_seqlen: maximum sequence length of kvcache
        block_size: block size
    Returns:
        output: [batch, heads, dim_v]

    """

    batch, heads, dim = query.shape
    heads_kv = key.shape[2]
    dim_v = value.shape[-1]
    max_selected_blocks = block_indices.shape[-1]
    block_H = 64

    actual_num_blocks = torch.sum(block_indices != -1, dim=-1).to(torch.int32)
    actual_num_blocks = actual_num_blocks[:,
                                          0]  #[batch],  number of valid blocks, assume all groups in the same batch have the same number of blocks

    # get num_split
    num_m_blocks = 1 * (heads // heads_kv + block_H - 1) // block_H
    num_n_blocks = max_selected_blocks  #(kv_seqlen  + block_size - 1 ) // block_size
    # num_n_blocks = torch.sum(actual_num_blocks, dim=-1).item() * heads_kv # total number of blocks

    size_one_kv_head = max_selected_blocks * block_size * (
        dim + dim_v) * 2  #kv_seqlen * (dim + dim_v) * 2
    total_mblocks = batch * heads_kv * num_m_blocks
    num_sm = 132
    num_split = num_splits_heuristic(
        total_mblocks,
        num_sm,
        num_n_blocks,
        num_m_blocks,
        size_one_kv_head,
        is_causal_or_local=True,
        max_splits=128)

    program = flashattn(batch, heads, heads_kv, dim, dim_v)(
        block_N=block_size,
        block_H=block_H,
        num_split=T.symbolic("num_split"),
        num_stages=2,
        threads=128,
        max_cache_seqlen=T.symbolic("max_cache_seqlen"),
        max_selected_blocks=T.symbolic("max_selected_blocks"))

    glse = torch.empty((batch, heads, num_split), dtype=torch.float32, device='cuda')
    Output_partial = torch.empty((batch, heads, num_split, dim_v),
                                 dtype=torch.float32,
                                 device='cuda')
    kernel = tilelang.compile(program, out_idx=-1, target='cuda', execution_backend="cython")
    # print(kernel.get_kernel_source())

    output = kernel(query, key, value, block_indices, cache_seqlens, actual_num_blocks, glse,
                    Output_partial)
    # output = kernel(query, key, value, block_indices, cache_seqlens, glse, Output_partial)
    return output


def ref_program_torch(query, key, value, block_indices, cache_seqlens, max_cache_seqlen, num_blocks,
                      block_size):

    batch, heads, dim = query.shape
    heads_kv = key.shape[2]
    num_head_groups = query.shape[1] // key.shape[2]
    scale = dim**0.5
    key = rearrange(key, 'b n h d -> b h n d')  # [batch_size, heads_kv, seqlen_kv, dim]
    value = rearrange(value, 'b n h d -> b h n d')  # [batch_size, heads_kv, seqlen_kv, dim]

    query = rearrange(
        query, 'b (h g) d -> b g h d',
        g=num_head_groups)  # [batch_size, num_head_groups, heads_kv, dim]

    scores = einsum(
        query, key,
        'b g h d, b h s d -> b g h s')  # [batch_size, num_head_groups, heads_kv, seqlen_kv]

    sparse_mask = torch.zeros_like(scores)
    # Assign mask values based on block_indices
    for b in range(batch):
        for h in range(heads_kv):
            valid_indices = block_indices[b, h]  # Extract indices for this batch and head
            for idx in valid_indices:
                if idx >= 0:
                    sparse_mask[b, :, h, idx * block_size:(idx + 1) * block_size] = 1
    scores = scores.masked_fill(sparse_mask == 0, float('-inf'))

    range_len = torch.arange(scores.shape[-1], device='cuda').unsqueeze(0)
    cache_seqlens_expanded = cache_seqlens.unsqueeze(1)
    pad_mask = range_len >= cache_seqlens_expanded
    pad_mask = pad_mask[:, None, None, :]
    scores = scores.masked_fill(pad_mask, float('-inf'))
    attention = F.softmax(
        scores / scale, dim=-1)  # [batch_size, num_head_groups, heads_kv, seqlen_kv]

    out = einsum(attention, value,
                 'b g h s, b h s d -> b g h d')  # [batch_size, num_head_groups, heads_kv, dim]
    out = rearrange(out, 'b g h d -> b (h g) d')  # [batch_size, heads, dim]
    return out


def ref_program_fa(query, key, value, block_indices, cache_seqlens, max_cache_seqlen, num_blocks,
                   block_size):
    # latency reference
    # from flash_attn_interface import flash_attn_with_kvcache, flash_attn_func # fa3
    from flash_attn import flash_attn_with_kvcache, flash_attn_func  # noqa f401
    query = query.unsqueeze(1)
    output = flash_attn_with_kvcache(query, key, value, cache_seqlens=cache_seqlens)
    output = output.squeeze(1)
    return output


def debug(name, expect, actual, atol=1e-3, rtol=1e-3):
    all_close = torch.allclose(expect, actual, atol=atol, rtol=rtol)
    print(name + "  all_close={}".format(all_close))
    if not all_close:
        # print(expect[3, 28])
        # print(actual[3, 28])
        diff = (expect - actual).abs()
        print("all_close={}, max={}, min={}, mean={}".format(all_close,
                                                             diff.max().item(),
                                                             diff.min().item(),
                                                             diff.mean().item()))
        max_indices = torch.nonzero(diff == diff.max().item())
        first_index = tuple(max_indices[0].tolist())
        print(f"Index: {first_index}, expect: {expect[first_index]}, actual: {actual[first_index]}")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=8, help='batch size')
    parser.add_argument('--heads', type=int, default=32, help='heads')
    parser.add_argument('--heads_kv', type=int, default=8, help='heads_kv')
    parser.add_argument(
        '--max_cache_seqlen', type=int, default=8192, help='kvcache sequence length')
    parser.add_argument('--dim', type=int, default=128, help='dim')
    parser.add_argument('--dim_v', type=int, default=128, help='dim_v')
    parser.add_argument('--sparse_ratio', type=float, default=0.8, help='sparse ratio')
    parser.add_argument('--block_size', type=int, default=32, help='block_size')
    args = parser.parse_args()

    batch, heads, heads_kv, max_cache_seqlen, dim, dim_v = args.batch, args.heads, args.heads_kv, args.max_cache_seqlen, args.dim, args.dim_v
    sparse_ratio = args.sparse_ratio
    block_size = args.block_size
    qk_flops = 2 * batch * heads * max_cache_seqlen * dim
    pv_flops = 2 * batch * heads * max_cache_seqlen * dim_v
    total_flops = qk_flops + pv_flops

    max_selected_blocks = int(math.ceil(max_cache_seqlen * (1 - sparse_ratio) / block_size))
    print("max_selected_blocks: ", max_selected_blocks)
    dtype = torch.float16
    block_H = 64

    Q = torch.randn((batch, heads, dim), dtype=dtype, device='cuda')
    K = torch.randn((batch, max_cache_seqlen, heads_kv, dim), dtype=dtype, device='cuda')
    V = torch.randn((batch, max_cache_seqlen, heads_kv, dim_v), dtype=dtype, device='cuda')
    cache_seqlens = torch.randint(1, max_cache_seqlen, (batch,), dtype=torch.int32, device='cuda')
    # cache_seqlens = torch.full((batch,), max_cache_seqlen, dtype=torch.int32, device='cuda')
    # Ensure at least one element equals cache_seqlen
    random_index = torch.randint(0, batch, (1,), device='cuda').item()  # Select a random index
    cache_seqlens[
        random_index] = max_cache_seqlen  # Assign cache_seqlen to ensure at least one occurrence

    print("cache_seqlens: ", cache_seqlens)

    max_valid_num_blocks = torch.ceil(cache_seqlens / block_size).int()
    print("max_valid_num_blocks: ", max_valid_num_blocks)
    # Initialize block_indices with -1 (for padding blocks)
    block_indices = torch.full((batch, heads_kv, max_selected_blocks),
                               -1,
                               dtype=torch.int32,
                               device='cuda')

    # Assign valid indices while ensuring no duplicates within each batch-group
    for b in range(batch):
        max_valid_block = max_valid_num_blocks[b].item()  # Max valid blocks for this batch
        if max_valid_block > 0:  # Ensure there's at least one valid block
            for h in range(heads_kv):
                valid_indices = torch.randperm(
                    max_valid_block, device='cuda', dtype=torch.int32)[:max_selected_blocks]
                block_indices[b, h, :len(valid_indices)] = valid_indices

    # Sort indices within each batch-group for consistency
    block_indices, _ = block_indices.sort(dim=-1, descending=True)
    # print("block_indices: ", block_indices)
    actual_num_blocks = torch.sum(block_indices != -1, dim=-1).to(torch.int32)[:, 0]
    print("actual_num_blocks: ", actual_num_blocks)
    print(block_indices.shape, actual_num_blocks.shape)

    max_num_blocks = torch.max(max_valid_num_blocks).item()
    print("max_num_blocks: ", max_num_blocks)

    # parity reference
    ref = ref_program_torch(Q, K, V, block_indices, cache_seqlens, max_cache_seqlen, max_num_blocks,
                            block_size)
    # ref = ref_program_triton(Q, K, V, block_indices, cache_seqlens, max_cache_seqlen, max_num_blocks, block_size)
    # out = kernel(Q, K, V, block_indices, cache_seqlens, actual_num_blocks, glse, Output_partial)
    # out = sparse_gqa_decode_varlen_indice(Q, K, V, block_indices, cache_seqlens, max_cache_seqlen, block_size)
    sparse_kernel = SparseFlashAttn(batch, heads, heads_kv, dim, dim_v, block_size)
    out = sparse_kernel(Q, K, V, block_indices, cache_seqlens)
    debug("output", ref, out, atol=1e-3, rtol=1e-3)

    ## latency reference
    for _i in range(10):
        ref = ref_program_fa(Q, K, V, block_indices, cache_seqlens, max_cache_seqlen,
                             max_num_blocks, block_size)
    torch.cuda.synchronize()
    start = time.time()
    for _i in range(100):
        ref = ref_program_fa(Q, K, V, block_indices, cache_seqlens, max_cache_seqlen,
                             max_num_blocks, block_size)
    torch.cuda.synchronize()
    print("dense time: ", (time.time() - start) / 100 * 1000)

    for _i in range(10):
        # out = sparse_gqa_decode_varlen_indice(Q, K, V, block_indices, cache_seqlens, max_cache_seqlen, block_size)
        out = sparse_kernel(Q, K, V, block_indices, cache_seqlens)
    torch.cuda.synchronize()
    start = time.time()
    for _i in range(100):
        # out = sparse_gqa_decode_varlen_indice(Q, K, V, block_indices, cache_seqlens, max_cache_seqlen, block_size)
        out = sparse_kernel(Q, K, V, block_indices, cache_seqlens)
    torch.cuda.synchronize()
    print("sparse time: ", (time.time() - start) / 100 * 1000)