example_chunk_scaled_dot_kkt.py 6.37 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# Reference: fla/ops/common/chunk_scaled_dot_kkt.py

import tilelang
import tilelang.language as T
import sys  # noqa: F401

# Add your fla repository path to sys.path
# Currently we use the fla repository from the flash-linear-attention project at commit id f03cb3ae
# sys.path.insert(0, "/home/tzj/flash-linear-attention")
try:
    import fla
    print(fla.__file__)
    from fla.ops.common.chunk_scaled_dot_kkt import chunk_scaled_dot_kkt_fwd
except ImportError:
    print("fla not found, using tilelang implementation")
    fla = None

import torch

torch.set_printoptions(profile="full")
torch.random.manual_seed(0)

tilelang.disable_cache()


def prepare_input(
    B,
    S,
    H,
    DK,
    input_dtype,
    output_dtype,
    accum_dtype,
):
    K = torch.randn(B, S, H, DK, dtype=input_dtype).cuda()
    Beta = torch.randn(B, S, H, dtype=input_dtype).cuda()
    G = torch.randn(B, S, H, dtype=accum_dtype).cuda()
    return K, Beta, G


def prepare_output(
    B,
    S,
    H,
    chunk_size,
    dtype,
):
    BS = chunk_size
    A = torch.empty(B, S, H, BS, dtype=dtype).cuda()
    return A


@tilelang.jit(out_idx=[-1])
def tilelang_chunk_scaled_dot_kkt_fwd(
    # task config
    B,
    S,
    H,
    DK,
    chunk_size=64,
    input_dtype="bfloat16",
    output_dtype="bfloat16",
    accum_dtype="float32",
    use_g=True,
    # kernel config
    block_S=64,
    block_DK=64,
    threads=256,
    num_stages=0,
):
    K_shape = (B, S, H, DK)
    Beta_shape = (B, S, H)
    G_shape = (B, S, H)
    assert chunk_size == block_S, "chunk_size must be equal to block_S"
    BS = chunk_size
    output_shape = (B, S, H, BS)

    @T.prim_func
    def kernel(
            K: T.Tensor(K_shape, dtype=input_dtype),
            Beta: T.Tensor(Beta_shape, dtype=input_dtype),
            G: T.Tensor(G_shape, dtype=accum_dtype),
            A: T.Tensor(output_shape, dtype=output_dtype),
    ):
        with T.Kernel(T.ceildiv(S, block_S), B * H, threads=threads) as (bs, bbh):
            bb, bh = bbh // H, bbh % H
            # !! Pay attention to the scope of the shared memory: may cause misaligned address when shape is one dimension or the buffer is too small
            Beta_shared = T.alloc_shared((block_S,), dtype=input_dtype, scope="shared")
            K_shared = T.alloc_shared((block_S, block_DK), dtype=input_dtype)
            A_shared = T.alloc_shared((block_S, block_S), dtype=output_dtype)
            Beta_K_fragment = T.alloc_fragment((block_S, block_DK), dtype=input_dtype)
            A_fragment = T.alloc_fragment((block_S, block_S), dtype=accum_dtype)

            # Tensor used for gated:
            G_shared = T.alloc_shared((block_S,), dtype=accum_dtype, scope="shared")
            G_diff_local = T.alloc_fragment((block_S, block_S), dtype=accum_dtype)

            T.annotate_layout({
                K_shared: tilelang.layout.make_swizzled_layout(K_shared),
                A_shared: tilelang.layout.make_swizzled_layout(A_shared),
            })

            T.fill(A_fragment, 0)
104
            T.disable_warp_group_reg_alloc()
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
            for i_s in T.Parallel(block_S):
                Beta_shared[i_s] = Beta[bb, bs * block_S + i_s, bh]

            for i_k in T.Pipelined(T.ceildiv(DK, block_DK), num_stages=num_stages):
                T.copy(
                    K[bb, bs * block_S:(bs + 1) * block_S, bh, i_k * block_DK:(i_k + 1) * block_DK],
                    K_shared)
                for i_s, i_k2 in T.Parallel(block_S, block_DK):
                    Beta_K_fragment[i_s, i_k2] = K_shared[i_s, i_k2] * Beta_shared[i_s]
                T.gemm(Beta_K_fragment, K_shared, A_fragment, transpose_B=True)

            if use_g:
                for i_s in T.Parallel(block_S):
                    G_shared[i_s] = G[bb, bs * block_S + i_s, bh]
                for i_s1, i_s2 in T.Parallel(block_S, block_S):
                    G_diff_local[i_s1, i_s2] = G_shared[i_s1] - G_shared[i_s2]
                for i_s1, i_s2 in T.Parallel(block_S, block_S):
                    with T.If(G_diff_local[i_s1, i_s2] <= 0 and i_s1 > i_s2):
                        with T.Then():
                            A_fragment[i_s1, i_s2] = A_fragment[i_s1, i_s2] * T.exp(
                                G_diff_local[i_s1, i_s2])
                        with T.Else():
                            A_fragment[i_s1, i_s2] = 0
            else:
                for i_s1, i_s2 in T.Parallel(block_S, block_S):
                    with T.If(i_s1 <= i_s2):  # noqa: SIM117
                        with T.Then():
                            A_fragment[i_s1, i_s2] = 0

            T.copy(A_fragment, A_shared)
            T.copy(A_shared, A[bb, bs * block_S:(bs + 1) * block_S, bh, :])

    return kernel


def run_test(
    B,
    S,
    H,
    DK,
    chunk_size,
    input_dtype,
    output_dtype,
    accum_dtype,
    use_g,
    block_DK,
    threads,
    num_stages,
):
    K, Beta, G = prepare_input(B, S, H, DK, getattr(torch, input_dtype),
                               getattr(torch, output_dtype), getattr(torch, accum_dtype))
    A_ref = prepare_output(B, S, H, chunk_size, getattr(torch, output_dtype))
    A_tilelang = prepare_output(B, S, H, chunk_size, getattr(torch, output_dtype))

    # reference
    if use_g:
        A_ref = chunk_scaled_dot_kkt_fwd(
            K, Beta, G, chunk_size=chunk_size, output_dtype=getattr(torch, output_dtype))
    else:
        A_ref = chunk_scaled_dot_kkt_fwd(
            K, Beta, None, chunk_size=chunk_size, output_dtype=getattr(torch, output_dtype))

    # tilelang
    block_S = chunk_size
    kernel = tilelang_chunk_scaled_dot_kkt_fwd(B, S, H, DK, chunk_size, input_dtype, output_dtype,
                                               accum_dtype, use_g, block_S, block_DK, threads,
                                               num_stages)
    A_tilelang = kernel(K, Beta, G)

    try:
        torch.testing.assert_close(A_tilelang, A_ref, rtol=1e-2, atol=1e-2)
        print("tilelang chunk scaled dot kkt fwd passed √")
    except Exception as e:
        print("tilelang chunk scaled dot kkt fwd failed ✗")
        print(e)
        print("reference cuda kernel:")
        print(kernel.get_kernel_source())


def main():
    run_test(
        B=1,
        S=32768,
        H=32,
        DK=128,
        chunk_size=64,
        input_dtype="bfloat16",
        output_dtype="bfloat16",
        accum_dtype="float32",
        use_g=True,
        block_DK=64,
        threads=128,
        num_stages=2)


if __name__ == "__main__":
    main()