"...resnet50_tensorflow.git" did not exist on "fb1f574db9ab52cc726867deba77226b6ebc6d46"
test_tilelang_tilelibrary_gemm.py 7.28 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from tilelang import tvm as tvm
import tilelang.testing


def matmul(
    M,
    N,
    K,
    block_M,
    block_N,
    block_K,
    trans_A,
    trans_B,
    in_dtype,
    out_dtype,
    accum_dtype,
    num_stages,
    threads,
):
    A_shape = (K, M) if trans_A else (M, K)
    B_shape = (N, K) if trans_B else (K, N)
    A_shared_shape = (block_K, block_M) if trans_A else (block_M, block_K)
    B_shared_shape = (block_N, block_K) if trans_B else (block_K, block_N)

    import tilelang.language as T

    @T.prim_func
    def main(
29
30
31
            A: T.Tensor(A_shape, in_dtype),
            B: T.Tensor(B_shape, in_dtype),
            C: T.Tensor((M, N), out_dtype),
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):
            A_shared = T.alloc_shared(A_shared_shape, in_dtype)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype)
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
            T.clear(C_local)
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                if trans_A:
                    T.copy(A[k * block_K, by * block_M], A_shared)
                else:
                    T.copy(A[by * block_M, k * block_K], A_shared)
                if trans_B:
                    T.copy(B[bx * block_N, k * block_K], B_shared)
                else:
                    T.copy(B[k * block_K, bx * block_N], B_shared)
                T.gemm(A_shared, B_shared, C_local, trans_A, trans_B)
            T.copy(C_local, C[by * block_M, bx * block_N])

    return main


def run_gemm(
    M,
    N,
    K,
    trans_A,
    trans_B,
    in_dtype,
    out_dtype,
    dtypeAccum,
    block_M,
    block_N,
    block_K,
    num_stages=3,
    num_threads=128,
):
    program = matmul(
        M,
        N,
        K,
        block_M,
        block_N,
        block_K,
        trans_A,
        trans_B,
        in_dtype,
        out_dtype,
        dtypeAccum,
        num_stages,
        num_threads,
    )

84
85
    kernel = tilelang.compile(program, out_idx=[2])
    profiler = kernel.get_profiler()
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

    def ref_program(A, B):
        import torch

        if trans_A:
            A = A.T
        if trans_B:
            B = B.T
        C = torch.matmul(A.to(torch.float), B.to(torch.float))
        C = C.to(torch.__getattribute__(out_dtype))
        return C

    profiler.assert_allclose(ref_program, atol=1e-2, rtol=1e-2)


def test_gemm():
    # GEMM tests for float16
    run_gemm(512, 1024, 768, False, False, "float16", "float16", "float16", 128, 256, 32,
             2)  # f16f16f16_nn
    run_gemm(512, 1024, 768, True, False, "float16", "float16", "float16", 128, 256, 32,
             2)  # f16f16f16_tn
    run_gemm(512, 1024, 768, False, True, "float16", "float16", "float16", 128, 256, 32,
             2)  # f16f16f16_nt
    run_gemm(512 - 8, 1024 - 32, 768 - 24, False, False, "float16", "float16", "float16", 128, 256,
             32, 2)  # pad_aligned_f16f16f16_nn
    run_gemm(512 - 9, 1024 - 7, 768 - 5, False, False, "float16", "float16", "float16", 128, 256,
             32, 2)  # pad_f16f16f16_nn

    # GEMM tests for mixed precision (float16 + float32)
115
116
    run_gemm(512, 1024, 768, False, False, "float16", "float16", "float32", 128, 128,
             16)  # f16f16f32_nn
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    run_gemm(512, 1024, 768, False, False, "float16", "float16", "float32", 128, 128,
             32)  # f16f16f32_nn
    run_gemm(512 + 19, 1024 + 17, 768 + 15, False, False, "float16", "float16", "float32", 128, 64,
             32)  # pad_f16f16f32_nn

    # GEMM tests for bfloat16
    run_gemm(512, 1024, 768, False, False, "bfloat16", "bfloat16", "float32", 128, 128,
             32)  # bf16bf16f32_nn

    # GEMM tests for float32
    run_gemm(512, 1024, 768, False, False, "float32", "float32", "float32", 64, 128,
             32)  # f32f32f32_nn
    run_gemm(512, 1024, 768, False, True, "float32", "float32", "float32", 64, 128,
             32)  # f32f32f32_nt
    run_gemm(512, 1024, 768, True, False, "float32", "float32", "float32", 64, 128,
             32)  # f32f32f32_tn

    # GEMM tests for float64
    run_gemm(512, 512, 512, False, True, "float64", "float64", "float64", 64, 32,
             16)  # f64f64f64_nt

    # GEMM tests for int8
    run_gemm(512, 1024, 768, False, False, "int8", "int8", "int32", 128, 128, 64)  # i8i8i32_nn
    run_gemm(512, 1024, 768, False, True, "int8", "int8", "int32", 128, 128, 64)  # i8i8i32_nt
    run_gemm(512, 1024, 768, True, False, "int8", "int8", "int32", 128, 128, 64)  # i8i8i32_tn


def matmul_rs(
    M,
    N,
    K,
    block_M,
    block_N,
    block_K,
    trans_A,
    trans_B,
    in_dtype,
    out_dtype,
    accum_dtype,
    num_stages,
    threads,
):
    A_shape = (K, M) if trans_A else (M, K)
    B_shape = (N, K) if trans_B else (K, N)
    A_shared_shape = (block_K, block_M) if trans_A else (block_M, block_K)
    B_shared_shape = (block_N, block_K) if trans_B else (block_K, block_N)
    A_frag_shape = A_shared_shape

    import tilelang.language as T

    @T.prim_func
    def main(
169
170
171
            A: T.Tensor(A_shape, in_dtype),
            B: T.Tensor(B_shape, in_dtype),
            C: T.Tensor((M, N), out_dtype),
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):
            A_shared = T.alloc_shared(A_shared_shape, in_dtype)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype)
            A_frag = T.alloc_fragment(A_frag_shape, in_dtype)
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
            T.clear(C_local)
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                if trans_A:
                    T.copy(A[k * block_K, by * block_M], A_shared)
                    T.copy(A_shared, A_frag)
                else:
                    T.copy(A[by * block_M, k * block_K], A_shared)
                    T.copy(A_shared, A_frag)
                if trans_B:
                    T.copy(B[bx * block_N, k * block_K], B_shared)
                else:
                    T.copy(B[k * block_K, bx * block_N], B_shared)
                T.gemm(A_frag, B_shared, C_local, trans_A, trans_B)
            T.copy(C_local, C[by * block_M, bx * block_N])

    return main


def run_gemm_rs(
    M,
    N,
    K,
    trans_A,
    trans_B,
    in_dtype,
    out_dtype,
    dtypeAccum,
    block_M,
    block_N,
    block_K,
    num_stages=3,
    num_threads=128,
):
    program = matmul_rs(
        M,
        N,
        K,
        block_M,
        block_N,
        block_K,
        trans_A,
        trans_B,
        in_dtype,
        out_dtype,
        dtypeAccum,
        num_stages,
        num_threads,
    )

227
228
    kernel = tilelang.compile(program, out_idx=[2])
    profiler = kernel.get_profiler()
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

    def ref_program(A, B):
        import torch

        if trans_A:
            A = A.T
        if trans_B:
            B = B.T
        C = torch.matmul(A.to(torch.float), B.to(torch.float))
        C = C.to(torch.__getattribute__(out_dtype))
        return C

    profiler.assert_allclose(ref_program, atol=1e-2, rtol=1e-2)


def test_gemm_rs():
    # GEMM tests for float16
    run_gemm_rs(512, 1024, 768, False, False, "float16", "float16", "float16", 128, 256, 32, 2)
    run_gemm_rs(512, 1024, 768, False, True, "float16", "float16", "float16", 128, 256, 32, 2)


if __name__ == "__main__":
    tilelang.testing.main()