tl_int8xint8.py 6.92 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import torch
import torch.backends
from bitblas import tvm as tvm
from tvm import DataType
from tvm import tl as TL
import tvm.tl.language as T
from bitblas.tl.utils import get_swizzle_layout
from bitblas.tl.mma_macro_generator import (
    TensorCoreIntrinEmitter,)
from bitblas.base import simplify_prim_func

torch.manual_seed(0)


def make_swizzle_layout(shared_buf):
    dtype = shared_buf.dtype
    shape = shared_buf.shape

    can_swizzle = shape[-1] * DataType(dtype).bits == 512
    if not can_swizzle:
        return T.Layout(shape, lambda *args: args)

    def transform_func(i, j):
        new_warp_i, new_warp_j = get_swizzle_layout(i, j, shape[-1], dtype)
        return [new_warp_i, new_warp_j]

    return T.Layout(shape, transform_func)


@simplify_prim_func
def tl_matmul(
    M,
    N,
    K,
    in_dtype,
    out_dtype,
    accum_dtype,
):
    assert in_dtype in [
        "float16",
        "int8",
    ], "Currently only float16 and int8 are supported"
    assert out_dtype in [
        "float16",
        "float32",
        "int32",
    ], "Currently only float16, float32 and int32 are supported"

    micro_size_x = micro_size_y = micro_size_k = 16

    if out_dtype == "int32":
        micro_size_k = 32

    # This is a debug config
    block_row_warps = 2
    block_col_warps = 2
    warp_row_tiles = 64
    warp_col_tiles = 64
    chunk = 32 if in_dtype == "float16" else 64
    shared_scope = "shared.dyn"

    # Pipeline Stage
    stage = 2

    block_M = block_row_warps * warp_row_tiles
    block_N = block_col_warps * warp_col_tiles
    block_K = chunk

    A_shape = (M, K)
    B_shape = (N, K)
    A_shared_shape = (block_M, block_K)
    B_shared_shape = (block_N, block_K)
    C_shared_shape = (
        block_M // micro_size_x,
        block_N // micro_size_y,
        micro_size_x,
        micro_size_y,
    )

    warp_size = 32
    threads = warp_size * (block_row_warps * block_col_warps)
    local_size_a = (micro_size_x * micro_size_k) // warp_size
    local_size_b = (micro_size_y * micro_size_k) // warp_size
    local_size_c = (micro_size_x * micro_size_y) // warp_size
    warp_rows = warp_row_tiles // micro_size_x
    warp_cols = warp_col_tiles // micro_size_y

    # MMA Wrapper to Auto Generate Code for MMA
    mma_emitter = TensorCoreIntrinEmitter(
        a_dtype=in_dtype,
        b_dtype=in_dtype,
        accum_dtype=accum_dtype,
        a_transposed=False,
        b_transposed=True,
        block_row_warps=block_row_warps,
        block_col_warps=block_col_warps,
        warp_row_tiles=warp_row_tiles,
        warp_col_tiles=warp_col_tiles,
        chunk=chunk,
    )

    @T.prim_func
    def main(
            A: T.Buffer(A_shape, in_dtype),
            B: T.Buffer(B_shape, in_dtype),
            C: T.Buffer((M, N), out_dtype),
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):

            A_shared = T.alloc_shared(A_shared_shape, in_dtype, scope=shared_scope)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype, scope=shared_scope)
            C_shared = T.alloc_shared(C_shared_shape, out_dtype, scope=shared_scope)
            A_local = T.alloc_local((warp_rows * local_size_a), in_dtype)
            B_local = T.alloc_local((warp_cols * local_size_b), in_dtype)
            C_local = T.alloc_local((warp_rows * warp_cols * local_size_c), accum_dtype)

            thread_bindings = T.thread_binding(0, threads, "threadIdx.x")

            T.annotate_layout({
                A_shared: make_swizzle_layout(A_shared),
                B_shared: make_swizzle_layout(B_shared),
            })

            # Improve L2 Cache
            T.use_swizzle(panel_size=10)

            T.clear(C_local)

            for ko in T.Pipelined((K // block_K), num_stages=stage):

                # Load A into shared memory
                for i, k in T.Parallel(block_M, block_K):
                    A_shared[i, k] = A[by * block_M + i, ko * block_K + k]

                # Load B into shared memory
                for j, k in T.Parallel(block_N, block_K):
                    B_shared[j, k] = B[bx * block_N + j, ko * block_K + k]

                for ki in T.serial(0, (block_K // micro_size_k)):

                    # Load A into fragment
                    mma_emitter.ldmatrix_a(
                        A_local,
                        A_shared,
                        ki,
                        thread_bindings=thread_bindings,
                    )

                    # Load B into fragment
                    mma_emitter.ldmatrix_b(
                        B_local,
                        B_shared,
                        ki,
                        thread_bindings=thread_bindings,
                    )

                    # Perform Matrix Multiplication
                    mma_emitter.mma(A_local, B_local, C_local)

            # Perform STMatrix
            mma_emitter.stmatrix(
                C_local,
                C_shared,
                thread_bindings=thread_bindings,
            )

            # Store shared into global
            for i, j in T.Parallel(block_M, block_N):
                C[by * block_M + i, bx * block_N + j] = C_shared[
                    i // micro_size_x,
                    j // micro_size_y,
                    i % micro_size_x,
                    j % micro_size_y,
                ]

    return main


def assert_tl_matmul_correctness(M, N, K, in_dtype, out_dtype, accum_dtype):
    matmul = tl_matmul(M, N, K, in_dtype, out_dtype, accum_dtype)
    mod, params = TL.lower(matmul)
    src_code = mod.imported_modules[0].get_source()
    # src_code is the generated cuda source
    assert src_code is not None
    print(src_code)
    if in_dtype == "int8":
        A = torch.randint(-7, 7, (M, K), device="cuda", dtype=torch.int8)
        B = torch.randint(-7, 7, (N, K), device="cuda", dtype=torch.int8)
    else:
        A = torch.rand(M, K, device="cuda", dtype=getattr(torch, in_dtype))
        B = torch.rand(N, K, device="cuda", dtype=getattr(torch, in_dtype))

    C = torch.zeros(M, N, device="cuda", dtype=getattr(torch, accum_dtype))

    mod = TL.Profiler(mod, params, [], TL.TensorSupplyType.Integer)

    mod(A, B, C)

    latency = mod.do_bench(mod.func, warmup=25)
    print(f"Latency: {latency}")
    # Ensure that the latency is not None
    assert latency is not None

    # Get Reference Result
    ref_c = torch.matmul(A.to(torch.float32), B.T.to(torch.float32)).to(getattr(torch, accum_dtype))
    print(C)
    print(ref_c)
    torch.testing.assert_close(C, ref_c, rtol=1e-2, atol=1e-2)


def test_assert_tl_matmul():
    assert_tl_matmul_correctness(128, 128, 128, "float16", "float16", "float16")
    assert_tl_matmul_correctness(128, 256, 256, "float16", "float32", "float32")


if __name__ == "__main__":
    # bitblas.testing.main()
    # assert_tl_matmul_correctness(128, 128, 128, "float16", "float16", "float16")
    # assert_tl_matmul_correctness(128, 128, 128, "int8", "int32", "int32")
    assert_tl_matmul_correctness(16384, 16384, 16384, "int8", "int32", "int32")