benchmark_model_10k_loops.py 1.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import argparse
import torch

from modeling_bitnet import BitnetForCausalLM

torch.set_grad_enabled(False)

parser = argparse.ArgumentParser()
parser.add_argument("--hf_path", default="1bitLLM/bitnet_b1_58-3B", type=str)
parser.add_argument("--batch_size", default=1, type=int)
parser.add_argument("--seq_len", default=1, type=int)

args = parser.parse_args()

seq_len = args.seq_len
batch_size = args.batch_size


def profile(model, input_data):
    import time

    import numpy as np

    model = model.cuda()
    model.eval()

    def get_runtime(num_repeats=1):
        tic = time.time()
        for _ in range(num_repeats):
            _ = model(input_data)
        torch.cuda.synchronize()
        return (time.time() - tic) * 1000 / num_repeats

    with torch.no_grad():
        st = time.time()
        while time.time() - st < 1.0:
            get_runtime()  # warmup
        warmup_runtime = get_runtime()
        num_repeats = max(1, int(1000 / warmup_runtime))
        times = get_runtime(num_repeats)
    return np.mean(times)


def main():
    model = BitnetForCausalLM.from_pretrained(
        "1bitLLM/bitnet_b1_58-3B",
        device_map="auto",
        low_cpu_mem_usage=True,
        use_flash_attention_2=True,
        torch_dtype=torch.float16,
    ).half()
    with torch.no_grad():
        model._post_process_weights()

    torch.cuda.empty_cache()

    input_id = torch.ones(batch_size, seq_len).long().cuda()
    for _ in range(10000):
        _ = model(input_id)


if __name__ == "__main__":
    main()