thread_partial_sync.cc 11.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

/*!
 * \file thread_storage_sync.cc
 */
#include <tvm/runtime/registry.h>
#include <tvm/tir/analysis.h>
#include <tvm/tir/builtin.h>
#include <tvm/tir/expr.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

#include <unordered_map>
#include <unordered_set>

#include "../op/builtin.h"
#include "runtime/thread_storage_scope.h"
#include "tir/transforms/ir_utils.h"
#include "tir/transforms/storage_access.h"

namespace tvm {
namespace tl {

using namespace tir;

class ThreadPartialSyncPlanner : public StorageAccessVisitor {
 public:
  explicit ThreadPartialSyncPlanner(StorageScope sync_scope) : sync_scope_(sync_scope) {}

  // The syncs inserted before each statement
  std::unordered_set<const Object*> syncs_inserted_;
  std::unordered_map<const Object*, int> partial_syncs_inserted_;

 protected:
  bool Enabled(const VarNode* buf, const StorageScope& scope) const final {
    return in_device_env() && scope == sync_scope_;
  }
  // Plan the sync
  std::vector<AccessEntry> Summarize(std::vector<StmtEntry> seq, const ForNode* loop) final {
    // Redirect all "shared.dyn" buffer access to the same buffer var
    // so that the accesses can be planned together.
    Var shared_dyn_buf;
    for (StmtEntry& entry : seq) {
      for (AccessEntry& access : entry.access) {
        if (access.scope.rank == StorageRank::kShared && access.scope.tag == ".dyn" &&
            access.buffer.defined()) {
          if (!shared_dyn_buf.defined()) {
            shared_dyn_buf = access.buffer;
          } else {
            access.buffer = shared_dyn_buf;
          }
        }
      }
    }

    // Unsynced reads and writes
    std::vector<AccessEntry> reads;
    std::vector<AccessEntry> writes;
    // if it is a loop, rotate two times to consider effect of loop.
    // simulation based approach to find dependencies
    for (size_t i = 0; i < seq.size(); ++i) {
      const StmtEntry& s = seq[i];
      // check if sync before statement is needed.
      bool sync_before_stmt = (syncs_inserted_.count(s.stmt) != 0);
      // Apply the syncs added already.
      if (sync_before_stmt) {
        reads.clear();
        writes.clear();
      }
      for (const AccessEntry& acc : s.access) {
        if (acc.type == kRead) {
          if (FindConflict(writes, acc, false)) {
            sync_before_stmt = true;
            break;
          }
        } else if (acc.type == kWrite) {
          if (FindConflict(reads, acc, false)) {
            sync_before_stmt = true;
            break;
          }
        } else if (acc.type == kSync) {
          reads.clear();
          writes.clear();
        }
      }
      // If sync is inserted. remove the irrelevant things.
      if (sync_before_stmt) {
        reads.clear();
        writes.clear();
      }
      // Add the read/write of current statement
      for (const AccessEntry& acc : s.access) {
        if (acc.type == kRead) {
          reads.push_back(acc);
        } else if (acc.type == kWrite) {
          writes.push_back(acc);
        } else if (acc.type == kSync) {
          reads.clear();
          writes.clear();
        }
      }
      if (sync_before_stmt) {
        insert_syncs(s.stmt);
      }
    }
    if (loop != nullptr) {
      for (size_t i = 0; i < seq.size(); ++i) {
        const StmtEntry& s = seq[i];
        if (syncs_inserted_.count(s.stmt) != 0) break;
        if (reads.empty() && writes.empty()) break;
        bool sync_before_stmt = false;
        for (const AccessEntry& acc : s.access) {
          if (acc.type == kRead) {
            if (FindConflict(writes, acc, true)) {
              sync_before_stmt = true;
              break;
            }
          } else if (acc.type == kWrite) {
            if (FindConflict(reads, acc, true)) {
              sync_before_stmt = true;
              break;
            }
          } else if (acc.type == kSync) {
            reads.clear();
            writes.clear();
          }
        }
        if (sync_before_stmt) {
          insert_syncs(s.stmt);
          break;
        }
      }
    }
    // return the exposed entries, remove unnecessary ones.
    int sync_count = 0;
    // head are before first sync, tail are after last sync
    std::vector<AccessEntry> head, tail;
    AccessEntry esync;
    esync.threads = this->env_threads();
    esync.type = kSync;
    esync.scope = sync_scope_;

    for (const StmtEntry& s : seq) {
      if (syncs_inserted_.count(s.stmt)) {
        if (sync_count != 0) {
          tail.clear();
        } else {
          head.push_back(esync);
        }
        ++sync_count;
      }
      for (const AccessEntry& acc : s.access) {
        if (acc.type == kSync) {
          if (sync_count != 0) {
            tail.clear();
          } else {
            head.push_back(esync);
          }
          ++sync_count;
        } else {
          if (sync_count != 0) {
            tail.push_back(acc);
          } else {
            head.push_back(acc);
          }
        }
      }
    }
    head.insert(head.end(), tail.begin(), tail.end());
    if (loop != nullptr) {
      // clear double buffer flag after a loop is finished.
      for (AccessEntry& e : head) {
        e.double_buffer_write = false;
      }
    }
    return head;
  }

 private:
  // find conflicting entry in vec.
  bool FindConflict(const std::vector<AccessEntry>& prev, const AccessEntry& curr,
                    bool loop_carry) {
    for (const AccessEntry& x : prev) {
      if (FindConflict(x, curr, loop_carry)) {
        return true;
      }
    }
    return false;
  }

  bool FindConflict(const AccessEntry& prev, const AccessEntry& curr, bool loop_carry) {
    // Access to different buffers does not conflict.
    if (!prev.buffer.same_as(curr.buffer)) {
      return false;
    }

    // Assumes no race between threads
    // Same index value means no conflicts
    // TODO(tqchen) more standard set based testing.
    bool has_same_index = true;
    // Even if access has the same index, those indices need to
    // depend on the innermost thread id to avoid race condition
    bool depends_on_thread_index = true;
    const VarNode* thread_index_var = nullptr;
    if (!curr.threads.empty()) {
      thread_index_var = curr.threads.back()->var.get();
    }

    for (size_t i = 0; i < prev.touched.size(); i++) {
      const auto& prev_intset = prev.touched[i];
      const auto& curr_intset = curr.touched[i];

      if (prev_intset.IsSinglePoint() && curr_intset.IsSinglePoint()) {
        PrimExpr prev_index = prev_intset.PointValue();
        PrimExpr curr_index = curr_intset.PointValue();
        has_same_index = ExprDeepEqual()(prev_index, curr_index);
        if (thread_index_var != nullptr) {
          auto f_uses_thread_index = [=](const tvm::tir::VarNode* parameter) {
            return parameter == thread_index_var;
          };
          depends_on_thread_index = depends_on_thread_index &&
                                    UsesVar(curr_index, f_uses_thread_index) &&
                                    UsesVar(prev_index, f_uses_thread_index);
        }
      } else {
        has_same_index = false;
      }

      if (!(has_same_index && depends_on_thread_index)) {
        break;
      }
    }
    if (has_same_index && depends_on_thread_index) {
      return false;
    }

    // If this is a read into a double buffer that was previously
    // swapped out, then it doesn't conflict.
    if (prev.double_buffer_write && curr.type == kRead && !loop_carry) {
      return false;
    }

    // If nothing else allows sharing the same buffer, then they are
    // in conflict.
    return true;
  }

  void VisitStmt_(const AttrStmtNode* op) final {
    if (op->attr_key == "kWarpSpecializationScope") {
      IfThenElse body = Downcast<IfThenElse>(op->body);
      auto partitions = Downcast<Array<IntImm>>(op->node);
      ICHECK(partitions.size() == 2);

      scope_.push_back(std::vector<StmtEntry>());
      num_partial_threads_ = partitions[0];
      this->VisitStmt(body->then_case);
      StmtEntry s;
      s.stmt = op;
      s.access = Summarize(std::move(scope_.back()), nullptr);
      scope_.pop_back();

      num_partial_threads_ = partitions[1];
      scope_.push_back(std::vector<StmtEntry>());
      VisitStmt(body->else_case.value());
      auto v = Summarize(std::move(scope_.back()), nullptr);
      scope_.pop_back();
      s.access.insert(s.access.end(), v.begin(), v.end());

      num_partial_threads_ = NullOpt;
    } else {
      StorageAccessVisitor::VisitStmt_(op);
    }
  }

  void insert_syncs(const Object* obj) {
    // ICHECK_EQ(condition_counter(), 0) << "Cannot insert syncs inside condition";
    if (syncs_inserted_.count(obj)) return;
    if (num_partial_threads_.defined()) {
      syncs_inserted_.insert(obj);
      partial_syncs_inserted_[obj] = static_cast<int>(num_partial_threads_.value()->value);
    } else {
      syncs_inserted_.insert(obj);
    }
  }

 private:
  Optional<IntImm> num_partial_threads_;
  // synchronization scope
  StorageScope sync_scope_;
};

// There are cases where necessary syncthreads is not inserted by ThreadPartialSyncInserter.
// For example, syncthreads is needed after async_wait_queue in the second loop below,
// but since ThreadPartialSyncInserter is not aware of the asynchronous semantics, it cannot tell
// that the syncthreads is needed there.
//
// // Pipeline prologue
// for i in range(125):
//    async_commit_queue(0):
//       async_scope:
//          shared[(i + 3) % 4] = ...
// ...
//
// // Pipeline Epilogue
// for i in range(3):
//    async_wait_queue(0, 2 - i):
//       local[...] = shared[(i + 125) % 4]


class ThreadPartialSyncInserter : public StmtExprMutator {
 public:
  ThreadPartialSyncInserter(StorageScope sync_scope, const std::unordered_set<const Object*>& syncs,
                     std::unordered_map<const Object*, int> partial_syncs)
      : sync_scope_(sync_scope), syncs_(syncs), partial_syncs_(partial_syncs) {}

  Stmt VisitStmt(const Stmt& stmt) final {
    if (syncs_.size() == 0) return stmt;
    if (syncs_.count(stmt.get())) {
      Stmt barrier;
      if (partial_syncs_.count(stmt.get())) {
        auto iter = partial_syncs_.find(stmt.get());
        ICHECK(sync_scope_.rank == StorageRank::kShared);
        barrier = Evaluate(Call(DataType::Int(32), tl::SyncThreadsPartialOp(), {iter->second}));
      } else {
        return StmtExprMutator::VisitStmt(stmt);
      }
      // Mutate after query, to avoid stmt change.
      auto ret = StmtExprMutator::VisitStmt(stmt);
      ret = SeqStmt({barrier, ret});
      return ret;
    } else {
      return StmtExprMutator::VisitStmt(stmt);
    }
  }

 private:
  // data structure.
  StorageScope sync_scope_;
  const std::unordered_set<const Object*>& syncs_;
  const std::unordered_map<const Object*, int>& partial_syncs_;
};

Stmt ThreadPartialSync(Stmt stmt, std::string storage_scope) {
  StorageScope sync_scope = StorageScope::Create(storage_scope);
  ThreadPartialSyncPlanner planner(sync_scope);
  planner(stmt);
  return ThreadPartialSyncInserter(sync_scope, planner.syncs_inserted_,
                            planner.partial_syncs_inserted_)(std::move(stmt));
}

using namespace tir::transform;

namespace transform {

Pass ThreadPartialSync(String storage_scope) {
  auto pass_func = [storage_scope](PrimFunc f, IRModule m, PassContext ctx) {
    auto* n = f.CopyOnWrite();
    n->body = tl::ThreadPartialSync(std::move(n->body), storage_scope);
    return f;
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.ThreadPartialSync", {});
}

TVM_REGISTER_GLOBAL("tl.transform.ThreadPartialSync").set_body_typed(ThreadPartialSync);

}  // namespace transform
}  // namespace tir
}  // namespace tvm