loop_vectorize.cc 10.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership. The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/*!
 * \file loop_vectorize.cc
 * \brief A tool to automatically vectorize a for loop
 */

#include "loop_vectorize.h"

#include <tvm/arith/iter_affine_map.h>
#include <tvm/tir/builtin.h>
#include <tvm/tir/stmt_functor.h>

#include <numeric>

#include "arith/int_operator.h"
#include "arith/ir_visitor_with_analyzer.h"
#include "../layout/layout.h"
#include "../layout/utils.h"
#include "common/loop_vectorization_utils.h"

namespace tvm {
namespace tl {

using namespace tir;

struct VectorizePlanResult {
  int vector_size;
  bool dynamic;
  PrimExpr condition;
};

class VectorizePlanner : public arith::IRVisitorWithAnalyzer {
 public:
  VectorizePlanner() = default;

  int Plan(const For& node) {
    this->operator()(node);
    // Always Enable vectorization
    // if (!has_nonlocal_memory_access_) return 1;
    return vector_size_;
  }

  bool GetDynamic() { return dynamic_; }

  PrimExpr GetCondition() { return condition_; }

 private:
  void VisitStmt_(const ForNode* node) final {
    inner_for_ = node;
    iter_map_.Set(node->loop_var, Range(node->min, node->extent));
    arith::IRVisitorWithAnalyzer::VisitStmt_(node);
  }

  void VisitExpr_(const BufferLoadNode* node) final {
    if (node->buffer.scope() == "shared" || node->buffer.scope() == "global" ||
        node->buffer.scope() == "shared.dyn")
      has_nonlocal_memory_access_ = true;
    if (node->buffer->shape.size() == 1 && node->buffer->shape[0].as<IntImmNode>()->value == 1) {
      // TODO(lei): This should be improved as
      // constant buffer that tl hack to use as local register.
      return arith::IRVisitorWithAnalyzer::VisitExpr_(node);
    }
    UpdateVectorSize(node->indices, node->buffer);
    return arith::IRVisitorWithAnalyzer::VisitExpr_(node);
  }

  void VisitStmt_(const BufferStoreNode* node) final {
    if (node->buffer.scope() == "shared" || node->buffer.scope() == "global" ||
        node->buffer.scope() == "shared.dyn")
      has_nonlocal_memory_access_ = true;
    UpdateVectorSize(node->indices, node->buffer);
    return arith::IRVisitorWithAnalyzer::VisitStmt_(node);
  }

  void VisitStmt_(const IfThenElseNode* node) final {
    CheckConditionVectorized(node->condition);
    return arith::IRVisitorWithAnalyzer::VisitStmt_(node);
  }

  void VisitExpr_(const CallNode* node) final {
    if (node->op == builtin::if_then_else()) {
      CheckConditionVectorized(node->args[0]);
    } else if (node->op == builtin::call_extern()) {
      // do not vectorize extern calls
      vector_size_ = 1;
    }
    return arith::IRVisitorWithAnalyzer::VisitExpr_(node);
  }

  void CheckConditionVectorized(const PrimExpr& cond) {
    // TODO: perform some checks here
  }

  void UpdateVectorSize(const Array<PrimExpr> indices, const Buffer& buffer) {
    if (!inner_for_) return;
    auto extent_ptr = inner_for_->extent.as<IntImmNode>();
    if (!extent_ptr) return;

    const DataType& access_type = buffer->dtype;
    // i // 2, i % 8 can also be vectorized as factor 16
    int max_vector_size = 128 / access_type.bits();
    // so we should disable this GCD optimization
    max_vector_size = arith::ZeroAwareGCD(max_vector_size, extent_ptr->value);

    auto last_dim = buffer->shape.back();
    auto mod_set = analyzer_.modular_set(last_dim);
    // when dynamic shape like [m, k]: coeff=1, base=0, GCD will block conditionally tail vectorize
    if (buffer->shape.back().as<IntImmNode>()) {
      max_vector_size = arith::ZeroAwareGCD(max_vector_size, mod_set->coeff);

      auto gcd_base = arith::ZeroAwareGCD(max_vector_size, mod_set->base);
      // If gcd_base is equal to the last dimension,
      // we should analyze the second-to-last dimension
      // in relation to the last dimension.
      if (gcd_base < Downcast<IntImm>(last_dim)->value) {
        max_vector_size = gcd_base;
      }

      vector_size_ = arith::ZeroAwareGCD(max_vector_size, vector_size_);

      PrimExpr elem_offset = 0;
      PrimExpr stride = 1;
      for (int i = indices.size() - 1; i >= 0; --i) {
        elem_offset = elem_offset + indices[i] * stride;
        stride = stride * buffer->shape[i];
      }
      while (!IndiceCanVectorize(elem_offset, inner_for_->loop_var, inner_for_->extent,
                                 vector_size_, &analyzer_)) {
        vector_size_ /= 2;
      }
    } else if (vector_size_ <= vector_load_bits_max_ / buffer->dtype.bits()) {
      // dynamic shape load: get the vectorization condition
      dynamic_ = true;
      PrimExpr offset = buffer.OffsetOf(indices).back();
      condition_ = (FloorMod(offset, vector_size_) == 0);
    }
  }

  static const int vector_load_bits_max_ = 128;

  const ForNode* inner_for_;
  Map<Var, Range> iter_map_;
  bool has_nonlocal_memory_access_ = false;
  int vector_size_ = 128;
  // conditionally vectorize
  bool dynamic_ = false;
  PrimExpr condition_;
};

class VectorizeDynamicCallRemover : public StmtExprMutator {
 public:
  VectorizeDynamicCallRemover(Var inner_var, int vector_size)
      : inner_var_(inner_var), vector_size_(vector_size) {}

 private:
  PrimExpr VisitExpr_(const CallNode* op) final {
    if (op->op.same_as(builtin::if_then_else())) {
      PrimExpr cond = this->VisitExpr(op->args[0]);
      Map<Var, PrimExpr> vmap;
      // Currently remove upper bound check
      vmap.Set(inner_var_, 0);
      cond = Substitute(cond, vmap);
      Array<PrimExpr> new_args{cond, op->args[1], op->args[2]};
      return Call(op->dtype, op->op, new_args, op->span);
    } else {
      // TODO: For other calls
      return GetRef<PrimExpr>(op);
    }
  }

  Var inner_var_;
  int vector_size_;
};

class VectorizeRewriter : public StmtExprMutator {
 public:
  VectorizeRewriter(VectorizePlanResult plan)
      : vector_size_(plan.vector_size), condition_(plan.condition), dynamic_(plan.dynamic) {}

 private:
  Stmt VisitStmt_(const ForNode* node) final {
    inner_for_ = node;
    auto ret = StmtExprMutator::VisitStmt_(node);
    if (inner_for_ == node) {  // rewrite the innermost loop
      For fnode = ret.as<For>().value();
      auto old_var = fnode->loop_var;
      auto extent_ptr = as_const_int(fnode->extent);
      ICHECK(extent_ptr) << fnode->extent;
      int extent = *extent_ptr;
      ICHECK(extent % vector_size_ == 0)
          << "extent: " << extent << " vector_size_: " << vector_size_;
      ICHECK(is_zero(fnode->min));
      if (!dynamic_) {  // check dynamic shape
        if (extent == vector_size_) {
          fnode.CopyOnWrite()->kind = ForKind::kVectorized;
          return fnode;
        } else {
          Var inner_var = Var("vec");
          Var outer_var = Var(old_var->name_hint);
          Map<Var, PrimExpr> vmap;
          vmap.Set(fnode->loop_var, outer_var * vector_size_ + inner_var);
          Stmt body = Substitute(fnode->body, vmap);
          body = For(inner_var, 0, vector_size_, ForKind::kVectorized, body);
          body = For(outer_var, 0, extent / vector_size_, fnode->kind, body, fnode->thread_binding,
                     fnode->annotations, fnode->span);
          return body;
        }
      } else {
        Var inner_var = Var("vec");
        Var outer_var = Var(old_var->name_hint);
        Map<Var, PrimExpr> vmap;
        vmap.Set(fnode->loop_var, outer_var * vector_size_ + inner_var);
        Stmt body = Substitute(fnode->body, vmap);
        // add condition ifthenelse here
        Map<Var, PrimExpr> vmap_condition;
        vmap_condition.Set(fnode->loop_var, outer_var * vector_size_);
        PrimExpr condition = Substitute(condition_, vmap_condition);

        VectorizeDynamicCallRemover remover(inner_var, vector_size_);
        body = remover(body);

        For vectorize_for = For(inner_var, 0, vector_size_, ForKind::kVectorized, body);
        For serial_for = For(inner_var, 0, vector_size_, ForKind::kSerial, body);
        body = IfThenElse(condition, vectorize_for, serial_for);
        body = For(outer_var, 0, extent / vector_size_, fnode->kind, body, fnode->thread_binding,
                   fnode->annotations, fnode->span);
        return body;
      }
    } else {
      return ret;
    }
  }

  const ForNode* inner_for_;
  const int vector_size_;
  const PrimExpr condition_;
  const bool dynamic_;
};

int GetVectorizeSize(const For& loop) { return VectorizePlanner().Plan(loop); }

VectorizePlanResult GetVectorizePlanResult(const For& loop) {
  VectorizePlanner planner;
  int vector_size = planner.Plan(loop);
  bool dynamic = planner.GetDynamic();
  PrimExpr condition = planner.GetCondition();
  return {vector_size, dynamic, condition};
}

bool IndiceCanVectorize(PrimExpr expr, Var var, PrimExpr iter_var_size, int target_vectorized_size,
                        arith::Analyzer* analyzer) {
  ICHECK(target_vectorized_size >= 1);
  if (target_vectorized_size == 1) return true;
  if (!analyzer->CanProveEqual(FloorMod(iter_var_size, target_vectorized_size), 0)) return false;
  Var v0("v0"), v1("v1");
  analyzer->Bind(v0, Range(0, target_vectorized_size));
  analyzer->Bind(v1, Range(0, FloorDiv(iter_var_size, target_vectorized_size)));
  PrimExpr expr_transformed =
      analyzer->Simplify(Substitute(expr, {{var, v0 + v1 * target_vectorized_size}}));

  Vectorizer vectorizer(v0, IntImm(v0->dtype, target_vectorized_size));
  PrimExpr expr_vectorized = vectorizer.VisitExpr(expr_transformed);
  auto ramp_node = expr_vectorized.as<RampNode>();
  if (!ramp_node) {
    // Broadcast value
    if (expr_vectorized.dtype().lanes() == 1)
      return true;
    else
      return false;
  } else {
    return is_one(ramp_node->stride);
  }
}

For VectorizeLoop(const For& loop, int vectorize_hint) {
  VectorizePlanResult res{128, false, 0};
  if (vectorize_hint <= 0) {
    res = GetVectorizePlanResult(loop);
    vectorize_hint = res.vector_size;
  }
  if (vectorize_hint == 1) return loop;
  auto rewriter = VectorizeRewriter(res);
  return Downcast<For>(rewriter(loop));
}

}  // namespace tl
}  // namespace tvm