cluster_planning.cc 4.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership. The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/*!
 * \file clasuter_planning.cc
 * \brief Plan the cluster for GPU(sm90+) blocks
 */

#include <tvm/arith/analyzer.h>
#include <tvm/tir/analysis.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

namespace tvm {
namespace tir {

class ClusterPlanner {
 public:
  static PrimFunc Substitute(PrimFunc& f) {
    // Step 1: Collect the read region of the function
    Map<Var, Buffer> buffer_data_to_buffer_;
    for (const auto& [_, buffer] : f->buffer_map) {
      buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"", /*body*/ f->body);
    Array<Array<BufferRegion>> access = GetBlockReadWriteRegion(block, buffer_data_to_buffer_);
    auto reads = access[0];

    BlockIdxVisitor blockIdx_visitor;
    blockIdx_visitor(f->body);
    auto dom_map = blockIdx_visitor.dom_map_;

    // Step 2: Collect mem reuse count for clustering on each dimension.
    std::unordered_map<const IterVarNode*, size_t> mem_reuse_count;
    for (auto iv : dom_map) mem_reuse_count[iv] = 0;

    for (const auto& buffer_region : reads) {
      PrimExpr size = buffer_region->buffer->dtype.bits();
      RegionVisitor visitor;
      for (const auto& range : buffer_region->region) {
        size = size * range->extent;
        visitor(range->min);
      }
      size = arith::Analyzer().Simplify(size);
      if (auto imm = size.as<IntImmNode>()) {
        for (auto iv : dom_map) {
          if (visitor.seen_.count(iv->var.get()) == 0) mem_reuse_count[iv] += imm->value;
        }
      }
    }

    // Step 3: Pick the cluster dimension with the largest mem_reuse.
    size_t mem_reuse_max = 0;
    String cluster_tag;
    for (auto iv : dom_map) {
      if (auto extent = iv->dom->extent.as<IntImmNode>()) {
        if (extent->value % cluster_size_ == 0 && mem_reuse_count[iv] > mem_reuse_max) {
          cluster_tag = iv->thread_tag;
          mem_reuse_max = mem_reuse_count[iv];
        }
      }
    }

    if (mem_reuse_max > 0) {
      cluster_tag = "clusterIdx" + String(cluster_tag.c_str() + strlen("blockIdx"));
      return WithAttr(f, cluster_tag, Integer(cluster_size_));
    } else {
      return f;
    }
  }

 private:
  ClusterPlanner() = default;

  class RegionVisitor : public ExprVisitor {
   public:
    RegionVisitor(){};
    void VisitExpr_(const VarNode* var) { seen_.insert(var); }
    std::unordered_set<const VarNode*> seen_;
  };

  class BlockIdxVisitor : public StmtVisitor {
   public:
    BlockIdxVisitor(){};
    void VisitStmt_(const AttrStmtNode* attr) final {
      if (attr->attr_key == attr::thread_extent) {
        IterVar iv = Downcast<IterVar>(attr->node);
        String tag = iv->thread_tag;
        if (tag == "blockIdx.x" || tag == "blockIdx.y" || tag == "blockIdx.z")
          dom_map_.insert(iv.get());
      }
      StmtVisitor::VisitStmt_(attr);
    }
    /*! \brief The map from vars to blockidx extents. */
    std::unordered_set<const IterVarNode*> dom_map_;
  };

  /*! \brief Currently set the plossible cluster size as 2 */
  const static int cluster_size_ = 2;
};

PrimFunc ClusterPlanning(PrimFunc f) { return ClusterPlanner::Substitute(f); }

namespace transform {

tvm::transform::Pass ClusterPlanning() {
  auto pass_func = [=](PrimFunc f, IRModule m, PassContext ctx) {
    return ClusterPlanning(std::move(f));
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.ClusterPlanning", {});
}

TVM_REGISTER_GLOBAL("tl.transform.ClusterPlanning").set_body_typed(ClusterPlanning);
}  // namespace transform

}  // namespace tir
}  // namespace tvm