elem.cc 13.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

/*!
 * \file tl/op/elem.cc
 *
 * Define elment-wise operators.
 */

#include "elem.h"

#include <tvm/tir/builtin.h>
#include <tvm/tir/op.h>
#include <tvm/tir/op_attr_types.h>

#include "../target/utils.h"
#include "../transform/loop_partition.h"
#include "../transform/loop_vectorize.h"
#include "../transform/common/loop_fusion_utils.h"
#include "builtin.h"

namespace tvm {
namespace tl {

using namespace tir;

Copy::Copy(Array<PrimExpr> args, BufferMap vmap) : args_(args) {
  Array<Range> rgs[2];
  Buffer bf[2];
  for (int i = 0; i < 2; i++) {
    auto expr = args[i];
    auto call = expr.as<CallNode>();
    ICHECK(call);
    auto region = RegionOp(call->args, vmap);
    rgs[i] = region.GetRanges();
    bf[i] = region.GetBuffer();
  }
  std::tie(this->src, this->dst) = std::tie(bf[0], bf[1]);
  std::tie(this->src_range, this->dst_range) = std::tie(rgs[0], rgs[1]);
  if (args.size() >= 3){
    coalesced_width = Downcast<IntImm>(args[2]);
  }
}

Array<IterVar> Copy::MakeIterVars() const {
  Array<IterVar> loop_vars;
  size_t idx = 0;
  for (size_t i = 0; i < src_range.size(); i++) {
    if (is_one(src_range[i]->extent)) continue;
    Var var = Var(std::string{char('i' + idx)});
    idx++;
    loop_vars.push_back({Range(0, src_range[i]->extent), var, IterVarType::kDataPar});
  }
  return loop_vars;
}

// ivs: itervars returned by MakeIterVars()
// src_dst: 0 for src_indices, 1 for dst_indices
Array<PrimExpr> Copy::MakeIndices(const Array<IterVar>& ivs, int src_dst) const {
  Array<PrimExpr> indices;
  Array<Range> ranges = src_dst == 0 ? src_range : dst_range;
  size_t idx = 0;
  for (size_t i = 0; i < ranges.size(); i++) {
    if (is_one(ranges[i]->extent))
      indices.push_back(ranges[i]->min);
    else {
      indices.push_back(ranges[i]->min + ivs[idx]->var);
      idx++;
    }
  }
  ICHECK(idx == ivs.size());
  return indices;
}

PrimExpr Copy::MakePredicate(arith::Analyzer* analyzer, const Array<IterVar>& ivs,
                             Array<PrimExpr> extents, int src_dst) const {
  Array<Range> ranges = src_dst == 0 ? src_range : dst_range;
  Array<PrimExpr> cond_list;
  ICHECK(extents.size() == ranges.size()) << extents << " " << ranges;
  size_t idx = 0;
  for (size_t i = 0; i < ranges.size(); i++) {
    if (is_one(ranges[i]->extent)) continue;
    PrimExpr cond = ranges[i]->min + ivs[idx]->var < extents[i];
    if (!analyzer->CanProve(cond, arith::ProofStrength::kSymbolicBound)) {
      cond_list.push_back(cond);
    }
    cond = ranges[i]->min + ivs[idx]->var >= 0;
    if (!analyzer->CanProve(cond, arith::ProofStrength::kSymbolicBound)) {
      cond_list.push_back(cond);
    }
    idx++;
  }
  if (cond_list.empty())
    return {};
  else {
    PrimExpr cond = cond_list[0];
    for (size_t i = 1; i < cond_list.size(); i++) cond = And(cond, cond_list[i]);
    return cond;
  }
}

For Copy::MakeSIMTLoop(arith::Analyzer* analyzer) const {
  Array<IterVar> loop_vars = MakeIterVars();
  for (const auto& iv : loop_vars) analyzer->Bind(iv->var, iv->dom);

  Array<PrimExpr> src_indices = MakeIndices(loop_vars, 0);
  Array<PrimExpr> dst_indices = MakeIndices(loop_vars, 1);

  PrimExpr src_predicate = MakePredicate(analyzer, loop_vars, src->shape, 0);
  PrimExpr dst_predicate = MakePredicate(analyzer, loop_vars, dst->shape, 1);

  PrimExpr value = BufferLoad(src, src_indices);
  if (src->dtype != dst->dtype) value = Cast(dst->dtype, value);
  if (src_predicate.defined()) value = if_then_else(src_predicate, value, make_zero(dst->dtype));

  Stmt body = BufferStore(dst, value, dst_indices);
  if (dst_predicate.defined()) body = IfThenElse(dst_predicate, body);

  for (int i = loop_vars.size() - 1; i >= 0; i--) {
    Map<String, ObjectRef> annotations = {};
    if (coalesced_width.defined()){
      annotations.Set("coalesced_width", coalesced_width);
    }
    body = For(loop_vars[i]->var, 0, loop_vars[i]->dom->extent, ForKind::kParallel, body, NullOpt, annotations);
  }
  return Downcast<For>(body);
}

Stmt Copy::Lower(const LowerArgs& T, arith::Analyzer* analyzer) const {
  Stmt ldsm_stmt = LowerLDSMCopy(T, analyzer);
  if (ldsm_stmt.defined()) return ldsm_stmt;

  Stmt bulk_copy_stmt = LowerBulkCopy(T, analyzer);
  if (bulk_copy_stmt.defined()) return bulk_copy_stmt;
  auto simt_loop = MakeSIMTLoop(analyzer);
  auto fused_loop = Downcast<For>(ParallelLoopFuser::Fuse(simt_loop));

  auto par_op = std::make_unique<ParallelOp>(fused_loop);
  par_op->InferLayout({T.target, T.block_size, T.layout_map, T.buffer_remap}, InferLevel::kFree);
  auto thread_loop =
      PartitionLoop(par_op->GetRoot(), T.thread_var, analyzer, par_op->GetLoopLayout());
  auto vectorized_thread_loop = VectorizeLoop(thread_loop);
  if (par_op->GetPredicate(T.thread_var).defined()) {
    return IfThenElse(par_op->GetPredicate(T.thread_var).value(), vectorized_thread_loop);
  }

  return vectorized_thread_loop;
}

Stmt Copy::LowerLDSMCopy(const LowerArgs& T, arith::Analyzer* analyzer) const {
  // Check buffer scope
  bool is_ldmatrix;
  if (TargetHasLdmatrix(T.target) && src.scope() == "shared.dyn" &&
      dst.scope() == "local.fragment") {
    is_ldmatrix = true;
  } else if (TargetHasStmatrix(T.target) && dst.scope() == "shared.dyn" &&
             src.scope() == "local.fragment") {
    is_ldmatrix = false;
  } else {
    return Stmt();
  }

  // Check no predicates
  Array<IterVar> loop_vars = MakeIterVars();
  if (loop_vars.size() < 2) return Stmt();
  for (const auto& iv : loop_vars) analyzer->Bind(iv->var, iv->dom);
  PrimExpr src_predicate = MakePredicate(analyzer, loop_vars, src->shape, 0);
  PrimExpr dst_predicate = MakePredicate(analyzer, loop_vars, dst->shape, 1);
  if (src_predicate.defined() || dst_predicate.defined()) return Stmt();

  Buffer shared_tensor = is_ldmatrix ? src : dst;
  Buffer local_tensor = is_ldmatrix ? dst : src;

  Array<PrimExpr> local_indices = MakeIndices(loop_vars, is_ldmatrix ? 1 : 0);
  Fragment local_layout = Downcast<Fragment>(T.layout_map[local_tensor]);
  Array<PrimExpr> local_indices_transformed = local_layout->Forward(local_indices);
  local_tensor = T.buffer_remap[local_tensor];
  // currently only support 1-d case
  if (local_layout->OutputDim() != 1) return Stmt();

  Array<PrimExpr> shared_indices = MakeIndices(loop_vars, is_ldmatrix ? 0 : 1);
  Array<PrimExpr> shared_indices_transformed = shared_indices;
  Layout shared_layout;
  if (T.buffer_remap.count(shared_tensor)) {
    shared_layout = T.layout_map[shared_tensor];
    shared_tensor = T.buffer_remap[shared_tensor];
    shared_indices_transformed = shared_layout->Forward(shared_indices);
  }

  // Check local_layout follows 8x8 layout
  bool is_transposed;
  IterVar col_var = loop_vars[loop_vars.size() - 1];
  IterVar row_var = loop_vars[loop_vars.size() - 2];
  PrimExpr local_layout_thread_map =
      FloorMod(local_layout->ForwardThread(local_indices, NullOpt), 32);
  PrimExpr matrix_8x8_thread_map =
      makeGemmFragment8x8()->ForwardThread({FloorMod(row_var, 8), FloorMod(col_var, 8)}, NullOpt);
  PrimExpr matrix_8x8_thread_map_trans = makeGemmFragment8x8Transposed()->ForwardThread(
      {FloorMod(row_var, 8), FloorMod(col_var, 8)}, NullOpt);
  PrimExpr local_indices_flattened = local_tensor.OffsetOf(local_indices_transformed).back();
  if (analyzer->CanProveEqual(matrix_8x8_thread_map, local_layout_thread_map) &&
      IndiceCanVectorize(local_indices_flattened, col_var->var, col_var->dom->extent, 2,
                         analyzer)) {
    is_transposed = false;
  } else if (analyzer->CanProveEqual(matrix_8x8_thread_map_trans, local_layout_thread_map) &&
             IndiceCanVectorize(local_indices_flattened, row_var->var, row_var->dom->extent, 2,
                                analyzer)) {
    is_transposed = true;
  } else {
    return Stmt();
  }
  // Check shared_layout is 16 bytes continuous
  if (shared_tensor->dtype.bytes() != 2) return Stmt();
  PrimExpr flattened_indice = shared_tensor.OffsetOf(shared_indices_transformed).back();
  if (!IndiceCanVectorize(flattened_indice, loop_vars.back()->var, loop_vars.back()->dom->extent, 8,
                          analyzer))
    return Stmt();

  // Can only support local_range to be a full range
  for (size_t i = 0; i < dst_range.size(); i++) {
    if (!is_zero(dst_range[i]->min) ||
        !analyzer->CanProveEqual(dst_range[i]->extent, dst->shape[i]))
      return Stmt();
  }

  // Do the lowering here, try vectorized ldmatrix/stmatrix by 4/2/1
  PrimExpr extent = local_tensor->shape[0];
  int num = 1;
  if (analyzer->CanProveEqual(FloorMod(extent, 8), 0))
    num = 4;
  else if (analyzer->CanProveEqual(FloorMod(extent, 4), 0))
    num = 2;

  Array<PrimExpr> args;
  const Op& op = is_ldmatrix ? tl::LDMatrixOp() : tl::STMatrixOp();
  args.push_back(static_cast<int>(is_transposed));
  args.push_back(num);

  // Create shared address with regard to local address
  // if not transpose
  // coords = Inverse(base + 2 * (thread / 8) % num, warp + (thread % 8) * 4))
  // if transpose
  // coords = Inverse(base + 2 * (thread / 8) % num + thread % 2, warp + thread % 8 / 2)
  Var local_iter("i");
  Layout inv = local_layout->Inverse();
  Array<PrimExpr> shared_coords;
  PrimExpr warp = FloorDiv(T.thread_var, 32) * 32;
  if (!is_transposed)
    shared_coords =
        inv->Forward({local_iter * 2 * num + 2 * FloorMod(FloorDiv(T.thread_var, 8), num),
                      warp + FloorMod(T.thread_var, 8) * 4});
  else
    shared_coords =
        inv->Forward({local_iter * 2 * num + 2 * FloorMod(FloorDiv(T.thread_var, 8), num) +
                          FloorMod(T.thread_var, 2),
                      warp + FloorDiv(FloorMod(T.thread_var, 8), 2)});
  shared_coords.pop_back();  // remove rep
  if (shared_layout.defined()) shared_coords = shared_layout->Forward(shared_coords);
  PrimExpr shared_addr = shared_tensor.access_ptr(
      is_ldmatrix ? 1 : 2, DataType::Handle(), 1, shared_tensor.OffsetOf(shared_coords).back(), PrimExpr(2 * num));
  args.push_back(shared_addr);

  if (is_ldmatrix) {
    // Can only support same dtype for ldmatrx
    if (local_tensor->dtype != shared_tensor->dtype) return Stmt();
    PrimExpr local_addr =
        local_tensor.access_ptr(2, DataType::Handle(), 1, local_iter * 2 * num, PrimExpr(2 * num));
    args.push_back(local_addr);
  } else {
    for (int i = 0; i < num; i++) {
      PrimExpr value0 = BufferLoad(local_tensor, {local_iter * 2 * num + 2 * i});
      PrimExpr value1 = BufferLoad(local_tensor, {local_iter * 2 * num + 2 * i + 1});
      if (local_tensor->dtype != shared_tensor->dtype) {
        value0 = Cast(shared_tensor->dtype, value0);
        value1 = Cast(shared_tensor->dtype, value1);
      }
      PrimExpr value_packed = Call(DataType::Int(32), PackB16Op(), {value0, value1});
      args.push_back(value_packed);
    }
  }

  auto body = Evaluate(Call(DataType::Handle(), op, args));
  For for_node = For(local_iter, 0, FloorDiv(extent, 2 * num), ForKind::kSerial, body);
  for_node = LoopPragmaUnroll(for_node);
  return for_node;
}

LayoutMap Copy::InferLayout(const LayoutInferArgs& T, InferLevel level) {
  // Use parallel op to infer the layout
  if (par_op_ == nullptr) {
    arith::Analyzer analyzer;
    par_op_ = std::make_unique<ParallelOp>(MakeSIMTLoop(&analyzer));
  }
  return par_op_->InferLayout(T, level);
}

Fill::Fill(Array<PrimExpr> args, BufferMap vmap) {
  dst = vmap[GetVarFromAccessPtr(args[0])];
  if (args[1]->dtype != dst->dtype) {
    value = Cast(dst->dtype, args[1]);
  } else {
    value = args[1];
  }
}

For Fill::MakeSIMTLoop(arith::Analyzer* analyzer) const {
  int ndim = dst->shape.size();
  Array<IterVar> loop_vars;
  Array<PrimExpr> dst_indices;
  for (int i = 0; i < ndim; i++) {
    Var var = Var(std::string{char('i' + i)});
    loop_vars.push_back({Range(0, dst->shape[i]), var, IterVarType::kDataPar});
    dst_indices.push_back(var);
  }
  Stmt body = BufferStore(dst, value, dst_indices);
  for (int i = ndim - 1; i >= 0; i--) {
    body = For(loop_vars[i]->var, 0, loop_vars[i]->dom->extent, ForKind::kParallel, body);
  }
  return Downcast<For>(body);
}

Stmt Fill::Lower(const LowerArgs& T, arith::Analyzer* analyzer) const {

  if (dst.scope() == "local.fragment") {
    auto par_op = std::make_unique<ParallelOp>(MakeSIMTLoop(analyzer));
    par_op->InferLayout({T.target, T.block_size, T.layout_map}, InferLevel::kFree);
    par_op->InferLayout({T.target, T.block_size, T.layout_map}, InferLevel::kFree);
    auto thread_loop =
        PartitionLoop(par_op->GetRoot(), T.thread_var, analyzer, par_op->GetLoopLayout());
    auto vectorized_thread_loop = VectorizeLoop(thread_loop);
    if (par_op->GetPredicate(T.thread_var).defined()) {
      return IfThenElse(par_op->GetPredicate(T.thread_var).value(), vectorized_thread_loop);
    }
    return vectorized_thread_loop;
  } else if (dst.scope() == "local") {
    auto init_loop = MakeSIMTLoop(analyzer);
    auto vectorized_thread_loop = VectorizeLoop(init_loop);
    return vectorized_thread_loop;
  } else {
    LOG(FATAL) << "Unsupported scope " << dst.scope();
  }

}

TIR_REGISTER_TL_OP(Copy, copy)
    .set_num_inputs(3)
    .set_attr<TCallEffectKind>("TCallEffectKind", Integer(CallEffectKind::kOpaque));

TIR_REGISTER_TL_OP(Fill, fill)
    .set_num_inputs(2)
    .set_attr<TCallEffectKind>("TCallEffectKind", Integer(CallEffectKind::kOpaque));

}  // namespace tl
}  // namespace tvm