bulk_copy.cc 13.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

/*!
 * \file tl/op/bulk_copy.cc
 * \brief Bulk copy operator.
 *
 */

#include "bulk_copy.h"

#include <tvm/tir/builtin.h>
#include <tvm/tir/op.h>
#include <tvm/tir/op_attr_types.h>

#include "../target/utils.h"
#include "../target/cuda.h"
#include "builtin.h"

namespace tvm {
namespace tl {

using namespace tir;

static int to_CUtensorMapDataType(DataType dtype) {
  CUtensorMapDataType tp;
  if (dtype.is_float()) {
    switch (dtype.bits()) {
      case 64:
        tp = CU_TENSOR_MAP_DATA_TYPE_FLOAT64;
        break;
      case 32:
        tp = CU_TENSOR_MAP_DATA_TYPE_FLOAT32;
        break;
      case 16:
        tp = CU_TENSOR_MAP_DATA_TYPE_FLOAT16;
        break;
      case 8:
        tp = CU_TENSOR_MAP_DATA_TYPE_UINT8;
        break;
      default:
        ICHECK(0) << dtype;
    }
  } else if (dtype.is_bfloat16()) {
    tp = CU_TENSOR_MAP_DATA_TYPE_BFLOAT16;
  } else if (dtype.is_int()) {
    switch (dtype.bits()) {
      case 64:
        tp = CU_TENSOR_MAP_DATA_TYPE_INT64;
        break;
      case 32:
        tp = CU_TENSOR_MAP_DATA_TYPE_INT32;
        break;
      case 16:
        tp = CU_TENSOR_MAP_DATA_TYPE_UINT16;
        break;
      case 8:
        tp = CU_TENSOR_MAP_DATA_TYPE_UINT8;
        break;
      default:
        ICHECK(0) << dtype;
    }
  } else if (dtype.is_uint()) {
    switch (dtype.bits()) {
      case 64:
        tp = CU_TENSOR_MAP_DATA_TYPE_UINT64;
        break;
      case 32:
        tp = CU_TENSOR_MAP_DATA_TYPE_UINT32;
        break;
      case 16:
        tp = CU_TENSOR_MAP_DATA_TYPE_UINT16;
        break;
      case 8:
        tp = CU_TENSOR_MAP_DATA_TYPE_UINT8;
        break;
      default:
        ICHECK(0) << dtype;
    }
  } else {
    ICHECK(0) << dtype;
  }
  return static_cast<int>(tp);
}

template <typename T>
static Array<T> ReverseArray(Array<T> array) {
  return Array<T>{array.rbegin(), array.rend()};
}

Stmt Copy::LowerBulkCopy(const LowerArgs& T, arith::Analyzer* analyzer) const {
  if (!TargetIsHopper(T.target)) return Stmt();
  bool is_load;
  if (src.scope() == "global" && (dst.scope() == "shared.dyn" || dst.scope() == "shared")) {
    // Use the Hopper TMA bulk copy instructions
    is_load = true;
  } else if (dst.scope() == "global" && (src.scope() == "shared.dyn" || src.scope() == "shared")) {
    is_load = false;
  } else {
    return Stmt();
  }
  Buffer global_tensor = is_load ? src : dst;
  Buffer shared_tensor = is_load ? dst : src;
  Layout shared_layout;
  if (T.layout_map.count(shared_tensor)) {
    shared_layout = T.layout_map[shared_tensor];
    shared_tensor = T.buffer_remap[shared_tensor];
  }
  if (T.layout_map.count(global_tensor)) {
    ICHECK(T.layout_map.count(global_tensor) == 0) << "Cannot support global layout.";
  }

  TMADesc desc;

  // Verify copy rank
  desc.rank = global_tensor->shape.size();
  ICHECK(desc.rank >= 1 && desc.rank <= 5) << desc.rank;

  // Verify datatype
  ICHECK(global_tensor->dtype == shared_tensor->dtype);
  desc.data_type = to_CUtensorMapDataType(global_tensor->dtype);

  // Global Tensor Shape and Stride
  auto global_range = is_load ? src_range : dst_range;
  desc.global_addr = global_tensor->data;
  desc.global_shape = ReverseArray(global_tensor->shape);
  Array<PrimExpr> global_coords = ReverseArray(global_range.Map([](Range r) { return r->min; }));
  if (!global_tensor->strides.empty()) {
    desc.global_stride = ReverseArray(global_tensor->strides);
  } else {
    // Create stride from shape
    PrimExpr stride = 1;
    desc.global_stride.reserve(desc.rank);
    for (size_t i = 0; i < desc.rank; i++) {
      desc.global_stride.push_back(stride);
      stride *= desc.global_shape[i];
    }
  }
  // The first stride element should be 1
  ICHECK(is_one(desc.global_stride[0])) << desc.global_stride;
  // Make global stride in bytes
  desc.global_stride =
      desc.global_stride.Map([&](PrimExpr e) { return e * global_tensor->dtype.bytes(); });

  // Smem Box
  desc.smem_box = ReverseArray(global_range.Map([](Range r) { return r->extent; }));
  desc.smem_stride = Array<PrimExpr>(desc.rank, PrimExpr(1));

  // L2 & OOB
  desc.l2_promotion = static_cast<int>(CU_TENSOR_MAP_L2_PROMOTION_L2_128B);
  desc.oob_fill = static_cast<int>(CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE);

  // Detect smem layout
  desc.interleave = static_cast<int>(CU_TENSOR_MAP_INTERLEAVE_NONE);
  if (!shared_layout.defined()) {
    desc.swizzle = static_cast<int>(CU_TENSOR_MAP_SWIZZLE_NONE);
  } else {
    ICHECK(shared_layout->InputDim() == 2) << "Cannot detect TMA layout.";
    auto stride = as_const_int(shared_layout->InputShape()[0]);
    auto continuous = as_const_int(shared_layout->InputShape()[1]);
    ICHECK(stride != nullptr && continuous != nullptr);
    if (StructuralEqual()(shared_layout, makeHalfBankSwizzleLayout(*stride, *continuous,
                                                                   shared_tensor->dtype.bits()))) {
      desc.swizzle = static_cast<int>(CU_TENSOR_MAP_SWIZZLE_64B);
    } else if (StructuralEqual()(
                   shared_layout,
                   makeFullBankSwizzleLayout(*stride, *continuous, shared_tensor->dtype.bits()))) {
      desc.swizzle = static_cast<int>(CU_TENSOR_MAP_SWIZZLE_128B);
    } else {
      ICHECK(0) << "Cannot detect TMA layout.";
    }
  }

  auto inner_box_dim = as_const_int(desc.smem_box[0]);
  ICHECK(inner_box_dim != nullptr);
  int instruction_dim = *inner_box_dim;
  if (desc.swizzle == static_cast<int>(CU_TENSOR_MAP_SWIZZLE_64B)) {
    instruction_dim = 64 / src->dtype.bytes();
  } else if (desc.swizzle == static_cast<int>(CU_TENSOR_MAP_SWIZZLE_128B)) {
    instruction_dim = 128 / src->dtype.bytes();
  }
  ICHECK((*inner_box_dim) % instruction_dim == 0);
  desc.smem_box.Set(0, PrimExpr(instruction_dim));

  Call create_descriptor = Call(DataType::Handle(), CreateTMADescriptorOp(), desc.EncodeCallArgs());

  Array<PrimExpr> args;
  args.reserve(desc.rank + 3);
  args.push_back(create_descriptor);
  if (is_load) args.push_back(0);  // mbarrier id placeholder
  auto op = is_load ? TMALoadOp() : TMAStoreOp();

  Stmt tma_copy;

  if ((*inner_box_dim) != instruction_dim) {
    Var loop_var("i");
    int loop_extent = (*inner_box_dim) / instruction_dim;
    PrimExpr total_elements = 1;
    for (auto e : desc.smem_box) total_elements *= e;
    PrimExpr shared_addr = shared_tensor.access_ptr(is_load ? 2 : 1, DataType::Handle(), 1,
                                                    total_elements * loop_var, total_elements);
    args.push_back(shared_addr);
    global_coords.Set(0, global_coords[0] + instruction_dim * loop_var);
    for (auto coord : global_coords) args.push_back(coord);
    tma_copy = For(loop_var, 0, loop_extent, ForKind::kUnrolled,
                   Evaluate(Call(DataType::Handle(), op, args)));
  } else {
    PrimExpr shared_addr = shared_tensor.access_ptr(is_load ? 2 : 1);
    args.push_back(shared_addr);
    for (auto coord : global_coords) args.push_back(coord);
    tma_copy = Evaluate(Call(DataType::Handle(), op, args));
  }
  tma_copy = IfThenElse(EQ(T.thread_var, 0), tma_copy);

  return tma_copy;
}

Array<PrimExpr> TMADesc::EncodeCallArgs() const {
  Array<PrimExpr> args;
  args.reserve(rank * 4 + 7);

  args.push_back(data_type);
  args.push_back(static_cast<int>(rank));
  args.push_back(global_addr);
  for (auto e : global_shape) args.push_back(e);
  for (auto e : global_stride) args.push_back(e);
  for (auto e : smem_box) args.push_back(e);
  for (auto e : smem_stride) args.push_back(e);
  args.push_back(interleave);
  args.push_back(swizzle);
  args.push_back(l2_promotion);
  args.push_back(oob_fill);

  return args;
}

DataType cuTensorMapType() { return DataType::UInt(8, 128); }

Conv2DIm2ColOp::Conv2DIm2ColOp(Array<PrimExpr> args, BufferMap vmap) {
  src = vmap[GetVarFromAccessPtr(args[0])];
  dst = vmap[GetVarFromAccessPtr(args[1])];
  nhw_step = args[2];
  c_step = args[3];
  kernel = args[4].as<IntImm>().value()->value;
  stride = args[5].as<IntImm>().value()->value;
  dilation = args[6].as<IntImm>().value()->value;
  padding = args[7].as<IntImm>().value()->value;
}

Stmt Conv2DIm2ColOp::Lower(const LowerArgs& T, arith::Analyzer* analyzer) const {
  ICHECK(TargetIsHopper(T.target));
  ICHECK(src.scope() == "global" && (dst.scope() == "shared.dyn" || dst.scope() == "shared"));
  ICHECK(src->shape.size() == 4);
  ICHECK(dst->shape.size() == 2);
  ICHECK(src->dtype == dst->dtype);
  Layout shared_layout;
  if (T.layout_map.count(dst)) {
    shared_layout = T.layout_map[dst];
  }

  TMAIm2ColDesc desc;
  desc.rank = src->shape.size();
  desc.data_type = to_CUtensorMapDataType(src->dtype);
  desc.global_addr = src->data;
  desc.global_shape = ReverseArray(src->shape);
  if (!src->strides.empty()) {
    desc.global_stride = ReverseArray(src->strides);
  } else {
    // Create stride from shape
    PrimExpr stride = 1;
    desc.global_stride.reserve(desc.rank);
    for (size_t i = 0; i < desc.rank; i++) {
      desc.global_stride.push_back(stride);
      stride *= desc.global_shape[i];
    }
  }
  // The first stride element should be 1
  ICHECK(is_one(desc.global_stride[0])) << desc.global_stride;
  // Make global stride in bytes
  desc.global_stride = desc.global_stride.Map([&](PrimExpr e) { return e * src->dtype.bytes(); });
  desc.elem_stride = {1, stride, stride, 1};
  desc.lower_corner = {-padding, -padding};
  desc.upper_corner = {-padding, -padding};
  desc.smem_box_pixel = Downcast<IntImm>(dst->shape[0])->value;
  desc.smem_box_channel = Downcast<IntImm>(dst->shape[1])->value;
  desc.l2_promotion = static_cast<int>(CU_TENSOR_MAP_L2_PROMOTION_L2_128B);
  desc.oob_fill = static_cast<int>(CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE);
  desc.interleave = static_cast<int>(CU_TENSOR_MAP_INTERLEAVE_NONE);
  if (!shared_layout.defined()) {
    desc.swizzle = static_cast<int>(CU_TENSOR_MAP_SWIZZLE_NONE);
  } else {
    ICHECK(shared_layout->InputDim() == 2) << "Cannot detect TMA layout.";
    auto stride = as_const_int(shared_layout->InputShape()[0]);
    auto continuous = as_const_int(shared_layout->InputShape()[1]);
    ICHECK(stride != nullptr && continuous != nullptr);
    if (StructuralEqual()(shared_layout,
                          makeHalfBankSwizzleLayout(*stride, *continuous, dst->dtype.bits()))) {
      desc.swizzle = static_cast<int>(CU_TENSOR_MAP_SWIZZLE_64B);
    } else if (StructuralEqual()(shared_layout, makeFullBankSwizzleLayout(*stride, *continuous,
                                                                          dst->dtype.bits()))) {
      desc.swizzle = static_cast<int>(CU_TENSOR_MAP_SWIZZLE_128B);
    } else {
      ICHECK(0) << "Cannot detect TMA layout.";
    }
  }

  Call create_desc = Call(DataType::Handle(), CreateTMAIm2ColDescriptorOp(), desc.EncodeCallArgs());

  Array<PrimExpr> global_coords;  // c, w, h, n
  Array<PrimExpr> image_offset;   // w, h
  global_coords.reserve(desc.rank);

  ICHECK(analyzer->CanProveEqual(FloorMod(desc.global_shape[0], desc.smem_box_channel), 0))
      << "Currently can only support divisible channel case";

  global_coords.push_back(FloorMod(c_step * desc.smem_box_channel, desc.global_shape[0]));
  image_offset.push_back(
      dilation * FloorMod(FloorDiv(c_step * desc.smem_box_channel, desc.global_shape[0]), kernel));
  image_offset.push_back(dilation *
                         FloorDiv(c_step * desc.smem_box_channel, desc.global_shape[0] * kernel));

  PrimExpr h_dim = FloorDiv(src->shape[1] + 2 * padding - (kernel - 1) * dilation - 1, stride) + 1;
  PrimExpr w_dim = FloorDiv(src->shape[2] + 2 * padding - (kernel - 1) * dilation - 1, stride) + 1;
  global_coords.push_back(stride * FloorMod(nhw_step * desc.smem_box_pixel, w_dim) - padding);
  global_coords.push_back(
      stride * FloorMod(FloorDiv(nhw_step * desc.smem_box_pixel, w_dim), h_dim) - padding);
  global_coords.push_back(FloorDiv(nhw_step * desc.smem_box_pixel, w_dim * h_dim));

  Array<PrimExpr> args;
  args.reserve(desc.rank * 2 + 1);
  args.push_back(create_desc);
  args.push_back(0);  // mbar placeholder
  auto dst_buffer = T.buffer_remap.count(dst) ? T.buffer_remap[dst] : dst;
  auto shared_addr = dst_buffer.access_ptr(2);
  args.push_back(shared_addr);
  for (auto coord : global_coords) args.push_back(coord);
  for (auto offset : image_offset) args.push_back(offset);

  Stmt tma_copy =
      IfThenElse(EQ(T.thread_var, 0), Evaluate(Call(DataType::Handle(), TMALoadIm2ColOp(), args)));
  return tma_copy;
}

Array<PrimExpr> TMAIm2ColDesc::EncodeCallArgs() const {
  Array<PrimExpr> args;
  args.reserve(rank * 5 + 5);

  args.push_back(data_type);
  args.push_back(static_cast<int>(rank));
  args.push_back(global_addr);
  for (auto e : global_shape) args.push_back(e);
  for (auto e : global_stride) args.push_back(e);
  for (auto e : elem_stride) args.push_back(e);
  for (auto e : lower_corner) args.push_back(e);
  for (auto e : upper_corner) args.push_back(e);
  args.push_back(smem_box_pixel);
  args.push_back(smem_box_channel);
  args.push_back(interleave);
  args.push_back(swizzle);
  args.push_back(l2_promotion);
  args.push_back(oob_fill);

  return args;
}

TIR_REGISTER_TL_OP(Conv2DIm2ColOp, c2d_im2col)
    .set_num_inputs(8)
    .set_attr<TCallEffectKind>("TCallEffectKind", Integer(CallEffectKind::kOpaque));

}  // namespace tl
}  // namespace tvm