gemm_sm89.h 16.7 KB
Newer Older
1
2
3
4
#pragma once

#include <cute/algorithm/clear.hpp>
#include <cute/arch/mma_sm80.hpp>
5
6
#include <cute/arch/mma_sm89.hpp>

7
8
9
10
#include <cute/atom/mma_atom.hpp>
#include <cute/atom/mma_traits.hpp>
#include <cute/underscore.hpp>

11
12
13
#include "common.h"
#include "cuda_fp8.h"

14
15
16
namespace cute {

template <typename A_type, typename B_type, typename C_type, int num_warp_m,
17
          int num_warp_n, int N>
18
19
20
21
22
23
struct DispatchInstruction;

using _X = Underscore;

#if (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ >= 890))

24
25
26
template <int num_warp_m, int num_warp_n, int N>
struct DispatchInstruction<fp8_e4_t, fp8_e4_t, float, num_warp_m, num_warp_n,
                           N> {
27
  using MMA = MMA_Atom<SM89_16x8x32_F32E4M3E4M3F32_TN>;
28
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _X>;
29
};
30
31
32
template <int num_warp_m, int num_warp_n, int N>
struct DispatchInstruction<fp8_e5_t, fp8_e5_t, float, num_warp_m, num_warp_n,
                           N> {
33
  using MMA = MMA_Atom<SM89_16x8x32_F32E5M2E5M2F32_TN>;
34
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _X>;
35
36
};

37
38
template <int num_warp_m, int num_warp_n, int N>
struct DispatchInstruction<half_t, half_t, half_t, num_warp_m, num_warp_n, N> {
39
  using MMA = MMA_Atom<SM80_16x8x16_F16F16F16F16_TN>;
40
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _X>;
41
};
42
43
template <int num_warp_m, int num_warp_n, int N>
struct DispatchInstruction<half_t, half_t, float, num_warp_m, num_warp_n, N> {
44
  using MMA = MMA_Atom<SM80_16x8x16_F32F16F16F32_TN>;
45
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _X>;
46
};
47
template <int num_warp_m, int num_warp_n, int N>
48
struct DispatchInstruction<bfloat16_t, bfloat16_t, float, num_warp_m,
49
                           num_warp_n, N> {
50
  using MMA = MMA_Atom<SM80_16x8x16_F32BF16BF16F32_TN>;
51
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _X>;
52
};
53
template <int num_warp_m, int num_warp_n, int N>
54
struct DispatchInstruction<tfloat32_t, tfloat32_t, float, num_warp_m,
55
                           num_warp_n, N> {
56
  using MMA = MMA_Atom<SM80_16x8x8_F32TF32TF32F32_TN>;
57
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _X>;
58
};
59
60
template <int num_warp_m, int num_warp_n, int N>
struct DispatchInstruction<int8_t, int8_t, int, num_warp_m, num_warp_n, N> {
61
  using MMA = MMA_Atom<SM80_16x8x32_S32S8S8S32_TN>;
62
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _X>;
63
};
64
65
template <int num_warp_m, int num_warp_n, int N>
struct DispatchInstruction<double, double, double, num_warp_m, num_warp_n, N> {
66
67
68
69
  using MMA = MMA_Atom<SM80_8x8x4_F64F64F64F64_TN>;
  using MMA_Group = Tile<Int<num_warp_m * 16>, Int<num_warp_n * 16>, _X>;
};
#elif (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ >= 750))
70
71
template <int num_warp_m, int num_warp_n, int N>
struct DispatchInstruction<half_t, half_t, float, num_warp_m, num_warp_n, N> {
72
  using MMA = MMA_Atom<SM75_16x8x8_F32F16F16F32_TN>;
73
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _16>;
74
75
76
};
#endif

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
template <int N, int num_warp_n, bool transpose> struct SelectCopy {
  static constexpr int remainder = (N / num_warp_n) % 16;
  using type = std::conditional_t<
      remainder == 4 || remainder == 8 || remainder == 0,
      std::conditional_t<
          transpose,
          std::conditional_t<
              remainder == 4, SM75_U32x1_LDSM_N,
              std::conditional_t<remainder == 8, SM75_U32x2_LDSM_N,
                                 SM75_U32x4_LDSM_N>>,
          std::conditional_t<
              remainder == 4, SM75_U16x2_LDSM_T,
              std::conditional_t<remainder == 8, SM75_U16x4_LDSM_T,
                                 SM75_U16x8_LDSM_T>>>,
      DefaultCopy>;
};

94
95
template <int Bits, int N, int K, bool K_inner, int num_warp_n,
          typename Enable = void>
96
97
98
99
100
101
102
103
104
105
106
struct OperandTraits {
  // Primary template, use padded layout and default copy
  static constexpr int stride = K_inner ? K : N;
  static constexpr int padded =
      stride % (256 / Bits) == 0 ? stride + 128 / Bits : stride;
  using Layout = typename std::conditional<
      K_inner, Layout<Shape<Int<N>, Int<K>>, Shape<Int<padded>, _1>>,
      Layout<Shape<Int<N>, Int<K>>, Shape<_1, Int<padded>>>>::type;
  using Copy = DefaultCopy;
};

107
108
template <int N, int K, int num_warp_n>
struct OperandTraits<16, N, K, true, num_warp_n,
109
110
111
112
                     typename std::enable_if<K % 64 == 32>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 3, 3>{}, Layout<Shape<_8, _32>, Stride<_32, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
113
  using Copy = typename SelectCopy<N, num_warp_n, true>::type;
114
115
};

116
117
template <int N, int K, int num_warp_n>
struct OperandTraits<16, N, K, true, num_warp_n,
118
119
120
121
                     typename std::enable_if<K % 64 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 3, 3>{}, Layout<Shape<_8, _64>, Stride<_64, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
122
  using Copy = typename SelectCopy<N, num_warp_n, true>::type;
123
124
};

125
126
template <int N, int K, int num_warp_n>
struct OperandTraits<16, N, K, false, num_warp_n,
127
128
129
130
131
                     typename std::enable_if<N % 64 == 32>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 3, 3>{}, Layout<Shape<_32, _8>, Stride<_1, _32>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
132
  using Copy = typename SelectCopy<N, num_warp_n, false>::type;
133
134
};

135
136
template <int N, int K, int num_warp_n>
struct OperandTraits<16, N, K, false, num_warp_n,
137
138
139
140
141
                     typename std::enable_if<N % 64 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 3, 3>{}, Layout<Shape<_64, _8>, Stride<_1, _64>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
142
  using Copy = typename SelectCopy<N, num_warp_n, false>::type;
143
144
};

145
146
template <int N, int K, int num_warp_n>
struct OperandTraits<32, N, K, true, num_warp_n,
147
148
149
150
                     typename std::enable_if<K % 32 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 2, 3>{}, Layout<Shape<_8, _32>, Stride<_32, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
151
  using Copy = typename SelectCopy<N, num_warp_n, true>::type;
152
153
};

154
155
template <int N, int K, int num_warp_n>
struct OperandTraits<32, N, K, true, num_warp_n,
156
157
158
159
                     typename std::enable_if<K % 32 == 16>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 2, 3>{}, Layout<Shape<_8, _16>, Stride<_16, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
160
  using Copy = typename SelectCopy<N, num_warp_n, true>::type;
161
162
};

163
164
template <int N, int K, int num_warp_n>
struct OperandTraits<32, N, K, false, num_warp_n,
165
166
167
168
169
170
171
172
                     typename std::enable_if<N % 32 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 2, 3>{}, Layout<Shape<_32, _8>, Stride<_1, _32>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
  using Copy = UniversalCopy<tfloat32_t>;
};

173
174
template <int N, int K, int num_warp_n>
struct OperandTraits<32, N, K, false, num_warp_n,
175
176
177
178
179
180
181
182
                     typename std::enable_if<N % 32 == 16>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 2, 3>{}, Layout<Shape<_16, _8>, Stride<_1, _16>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
  using Copy = UniversalCopy<tfloat32_t>;
};

183
184
template <int N, int K, int num_warp_n>
struct OperandTraits<8, N, K, true, num_warp_n,
185
186
187
188
                     typename std::enable_if<K % 128 == 64>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 4, 3>{}, Layout<Shape<_8, _64>, Stride<_64, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
189
  using Copy = typename SelectCopy<N, num_warp_n, true>::type;
190
191
};

192
193
template <int N, int K, int num_warp_n>
struct OperandTraits<8, N, K, true, num_warp_n,
194
195
196
197
                     typename std::enable_if<K % 128 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 4, 3>{}, Layout<Shape<_8, _128>, Stride<_128, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
198
  using Copy = typename SelectCopy<N, num_warp_n, true>::type;
199
200
};

201
202
template <int N, int K, int num_warp_n>
struct OperandTraits<64, N, K, true, num_warp_n,
203
204
205
206
207
208
209
                     typename std::enable_if<K % 16 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 0, 4>{}, Layout<Shape<_4, _16>, Stride<_16, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
  using Copy = DefaultCopy;
};

210
211
template <int N, int K, int num_warp_n>
struct OperandTraits<64, N, K, false, num_warp_n,
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
                     typename std::enable_if<N % 16 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 2, 2>{}, Layout<Shape<_16, _4>, Stride<_1, _16>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
  using Copy = DefaultCopy;
};

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
          bool trans_B, bool clear_accum, typename A_type_raw,
          typename B_type_raw, typename C_type_raw>
class GemmTensorOp {
public:
  using A_type =
      typename std::conditional<std::is_same<A_type_raw, float>::value,
                                tfloat32_t, A_type_raw>::type;
  using B_type =
      typename std::conditional<std::is_same<B_type_raw, float>::value,
                                tfloat32_t, A_type_raw>::type;
  using C_type = C_type_raw;
232

233
  using Instruction =
234
      DispatchInstruction<A_type, B_type, C_type, num_warp_m, num_warp_n, N>;
235
236

  using OperandATraits =
237
      OperandTraits<sizeof_bits<A_type>::value, M, K, !trans_A, num_warp_m>;
238
  using OperandBTraits =
239
240
      OperandTraits<sizeof_bits<B_type>::value, N, K, trans_B, num_warp_n>;

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
  using SmemLayoutA = typename OperandATraits::Layout;
  using SmemLayoutB = typename OperandBTraits::Layout;
  using SmemCopyA = Copy_Atom<typename OperandATraits::Copy, A_type>;
  using SmemCopyB = Copy_Atom<typename OperandBTraits::Copy, B_type>;

  using TileMma = TiledMMA<typename Instruction::MMA,
                           Layout<Shape<Int<num_warp_m>, Int<num_warp_n>, _1>>,
                           typename Instruction::MMA_Group>;

  template <class... Args>
  static CUTE_DEVICE auto remove_swizzle(Layout<Args...> const &layout) {
    return layout;
  }
  // In fp16, when layout is KxN and n_warp is 1 and N % 64 == 0
  // the original layout fail to compile, currently using this as a workaround
  template <class... Args>
  static CUTE_DEVICE auto
  remove_swizzle(ComposedLayout<Args...> const &layout) {
    if constexpr (sizeof(A_type) == 2)
      return layout.layout_b();
    else
      return layout;
  }

  static CUTE_DEVICE void body(A_type_raw *pA, B_type_raw *pB, C_type_raw *pC) {
    const int tid = threadIdx.x;
    Tensor sA = make_tensor(make_smem_ptr(reinterpret_cast<A_type *>(pA)),
                            SmemLayoutA{});
    Tensor sB = make_tensor(make_smem_ptr(reinterpret_cast<B_type *>(pB)),
                            SmemLayoutB{});
    TileMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tid);
    auto tiled_copy_A = make_tiled_copy_A(SmemCopyA{}, tiled_mma);
    auto tiled_copy_B = make_tiled_copy_B(SmemCopyB{}, tiled_mma);
    auto thr_copy_A = tiled_copy_A.get_thread_slice(tid);
    auto thr_copy_B = tiled_copy_B.get_thread_slice(tid);

    Tensor tCrA = thr_mma.partition_fragment_A(sA);
    Tensor tCrB = thr_mma.partition_fragment_B(sB);
    Tensor tCsA = thr_copy_A.partition_S(sA);
    Tensor tCsB = thr_copy_B.partition_S(sB);

    Tensor tCrA_copy_view = thr_copy_A.retile_D(tCrA);
    Tensor tCrB_copy_view = thr_copy_B.retile_D(tCrB);

    Tensor acc =
        make_tensor(make_rmem_ptr(reinterpret_cast<C_type *>(pC)),
                    partition_shape_C(tiled_mma, Shape<Int<M>, Int<N>>{}));

    if constexpr (clear_accum) {
      clear(acc);
    }
    // when layout is KxN and n_warp is 1, there seem to be a bug, use this as a
    // workaround
    auto tCrA_view = make_tensor(tCrA.data(), remove_swizzle(tCrA.layout()));
    auto tCrB_view = make_tensor(tCrB.data(), remove_swizzle(tCrB.layout()));
297

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
    CUTE_UNROLL
    for (int k = 0; k < size<2>(tCrA); ++k) {
      copy(tiled_copy_A, tCsA(_, _, k), tCrA_copy_view(_, _, k));
      copy(tiled_copy_B, tCsB(_, _, k), tCrB_copy_view(_, _, k));
      gemm(tiled_mma, tCrA_view(_, _, k), tCrB_view(_, _, k), acc);
    }
  }

  static CUTE_DEVICE void body_rs(A_type_raw *pA, B_type_raw *pB,
                                  C_type_raw *pC) {
    const int tid = threadIdx.x;
    Tensor sB = make_tensor(make_smem_ptr(reinterpret_cast<B_type *>(pB)),
                            SmemLayoutB{});
    TileMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tid);
    auto tiled_copy_B = make_tiled_copy_B(SmemCopyB{}, tiled_mma);
    auto thr_copy_B = tiled_copy_B.get_thread_slice(tid);

    Tensor tCrB = thr_mma.partition_fragment_B(sB);
    Tensor tCsB = thr_copy_B.partition_S(sB);

    Tensor tCrB_copy_view = thr_copy_B.retile_D(tCrB);

    Tensor acc =
        make_tensor(make_rmem_ptr(reinterpret_cast<C_type *>(pC)),
                    partition_shape_C(tiled_mma, Shape<Int<M>, Int<N>>{}));
    Tensor tCrA =
        make_tensor(make_rmem_ptr(reinterpret_cast<A_type *>(pA)),
                    partition_shape_A(tiled_mma, Shape<Int<M>, Int<K>>{}));

    if constexpr (clear_accum) {
      clear(acc);
    }
    auto tCrB_view = make_tensor(tCrB.data(), remove_swizzle(tCrB.layout()));
    copy(tiled_copy_B, tCsB(_, _, 0), tCrB_copy_view(_, _, 0));
    CUTE_UNROLL
    for (int k = 0; k < size<2>(tCrA); ++k) {
      if (k < size<2>(tCrA) - 1) {
        copy(tiled_copy_B, tCsB(_, _, k + 1), tCrB_copy_view(_, _, k + 1));
      }
      gemm(tiled_mma, tCrA(_, _, k), tCrB_view(_, _, k), acc);
    }
  }

  static CUTE_DEVICE void body_sr(A_type_raw *pA, B_type_raw *pB,
                                  C_type_raw *pC) {
    const int tid = threadIdx.x;
    Tensor sA = make_tensor(make_smem_ptr(reinterpret_cast<A_type *>(pA)),
                            SmemLayoutA{});
    TileMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tid);
    auto tiled_copy_A = make_tiled_copy_A(SmemCopyA{}, tiled_mma);
    auto thr_copy_A = tiled_copy_A.get_thread_slice(tid);

    Tensor tCrA = thr_mma.partition_fragment_A(sA);
    Tensor tCsA = thr_copy_A.partition_S(sA);

    Tensor tCrA_copy_view = thr_copy_A.retile_D(tCrA);

    Tensor acc =
        make_tensor(make_rmem_ptr(reinterpret_cast<C_type *>(pC)),
                    partition_shape_C(tiled_mma, Shape<Int<M>, Int<N>>{}));
    Tensor tCrB =
        make_tensor(make_rmem_ptr(reinterpret_cast<B_type *>(pB)),
                    partition_shape_B(tiled_mma, Shape<Int<N>, Int<K>>{}));
    if constexpr (clear_accum) {
      clear(acc);
    }
    auto tCrA_view = make_tensor(tCrA.data(), remove_swizzle(tCrA.layout()));
    copy(tiled_copy_A, tCsA(_, _, 0), tCrA_copy_view(_, _, 0));
    CUTE_UNROLL
    for (int k = 0; k < size<2>(tCrA); ++k) {
      if (k < size<2>(tCrA) - 1) {
        copy(tiled_copy_A, tCsA(_, _, k + 1), tCrA_copy_view(_, _, k + 1));
      }
      gemm(tiled_mma, tCrA_view(_, _, k), tCrB(_, _, k), acc);
    }
  }
};

} // namespace cute

namespace tl {

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
          bool trans_B, bool clear_accum, typename A_type, typename B_type,
          typename C_type>
CUTLASS_DEVICE void gemm_ss(A_type *pA, B_type *pB, C_type *accum) {
  using MMA = cute::GemmTensorOp<M, N, K, num_warp_m, num_warp_n, trans_A,
                                 trans_B, clear_accum, A_type, B_type, C_type>;
  MMA::body(pA, pB, accum);
}

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
          bool trans_B, bool clear_accum, typename A_type, typename B_type,
          typename C_type>
CUTLASS_DEVICE void gemm_rs(A_type *pA, B_type *pB, C_type *accum) {
  using MMA = cute::GemmTensorOp<M, N, K, num_warp_m, num_warp_n, trans_A,
                                 trans_B, clear_accum, A_type, B_type, C_type>;
  MMA::body_rs(pA, pB, accum);
}

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
          bool trans_B, bool clear_accum, typename A_type, typename B_type,
          typename C_type>
CUTLASS_DEVICE void gemm_sr(A_type *pA, B_type *pB, C_type *accum) {
  using MMA = cute::GemmTensorOp<M, N, K, num_warp_m, num_warp_n, trans_A,
                                 trans_B, clear_accum, A_type, B_type, C_type>;
  MMA::body_sr(pA, pB, accum);
}

} // namespace tl