example_warp_specialize_flashmla.py 17.5 KB
Newer Older
1
2
3
import torch
import torch.nn.functional as F
import tilelang
4
from tilelang.autotuner import *
5
6
import tilelang.language as T
from einops import rearrange, einsum
7
8
9
import argparse

tilelang.disable_cache()
10
11


12
@tilelang.jit(out_idx=[6])
13
14
15
16
17
18
19
def flashattn(batch, heads, kv_head_num, seqlen_kv, dim, pe_dim, block_N, block_H, num_split):
    scale = (1.0 / (dim + pe_dim))**0.5 * 1.44269504  # log2(e)
    dtype = "float16"
    accum_dtype = "float"
    kv_group_num = heads // kv_head_num
    VALID_BLOCK_H = min(block_H, kv_group_num)
    assert kv_head_num == 1, "kv_head_num must be 1"
20
    h_dim = dim // 2
21
22
23
24
25
26
27
28
29

    @T.macro
    def flash_attn(
            Q: T.Tensor([batch, heads, dim], dtype),
            Q_pe: T.Tensor([batch, heads, pe_dim], dtype),
            KV: T.Tensor([batch, seqlen_kv, kv_head_num, dim], dtype),
            K_pe: T.Tensor([batch, seqlen_kv, kv_head_num, pe_dim], dtype),
            Output: T.Tensor([batch, heads, dim], dtype),
    ):
30
        with T.Kernel(heads // min(block_H, kv_group_num), batch, threads=256) as (hid, bid):
31
            # smem_sQ
32
33
            Q_shared_l = T.alloc_shared([block_H, h_dim], dtype)
            Q_shared_r = T.alloc_shared([block_H, h_dim], dtype)
34
            Q_pe_shared = T.alloc_shared([block_H, pe_dim], dtype)
35
36
37
38
            Q_pe_local_0 = T.alloc_fragment([block_H, pe_dim], dtype)
            Q_pe_local_1 = T.alloc_fragment([block_H, pe_dim], dtype)

            # smem_sK0
39
40
            KV_shared_0_l = T.alloc_shared([block_N, h_dim], dtype)
            KV_shared_0_r = T.alloc_shared([block_N, h_dim], dtype)
41
42
43
            K_pe_shared_0 = T.alloc_shared([block_N, pe_dim], dtype)

            # smem_sK1
44
45
46
            KV_shared_1_l = T.alloc_shared([block_N, h_dim], dtype)
            KV_shared_1_r = T.alloc_shared([block_N, h_dim], dtype)
            K_pe_shared_1 = T.alloc_shared([block_N, pe_dim], dtype)
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

            # smem_sP0
            SP0_shared = T.alloc_shared([block_H, block_N], dtype)

            # smem_sP1 reuse Q_pe_shared
            SP1_shared = Q_pe_shared

            # smem_sM
            scores_max = T.alloc_shared([block_H], accum_dtype)

            # smem_sScale0
            scores_scale_0 = T.alloc_shared([block_H], accum_dtype)
            # smem_sScale1
            scores_scale_1 = T.alloc_shared([block_H], accum_dtype)

            logsum = T.alloc_shared([block_H], accum_dtype)

64
65
66
67
            O_shared_l = Q_shared_l
            O_shared_r = Q_shared_r

            acc_s_0 = T.alloc_fragment([block_H, block_N], accum_dtype)
68
            acc_s_0_cast = T.alloc_fragment([block_H, block_N], dtype)
69
            acc_s_1 = T.alloc_fragment([block_H, block_N], accum_dtype)
70
            acc_s_1_cast = T.alloc_fragment([block_H, block_N], dtype)
71
72
73
74
            acc_o_l = T.alloc_fragment([block_H, h_dim], accum_dtype)
            acc_o_r = T.alloc_fragment([block_H, h_dim], accum_dtype)
            scores_max_0 = T.alloc_fragment([block_H], accum_dtype)
            scores_max_1 = T.alloc_fragment([block_H], accum_dtype)
75
76
77

            scores_max_prev_0 = T.alloc_fragment([block_H], accum_dtype)
            scores_max_prev_1 = T.alloc_fragment([block_H], accum_dtype)
78

79
80
81
82
83
84
85
            scores_sum_0 = T.alloc_fragment([block_H], accum_dtype)
            scores_sum_1 = T.alloc_fragment([block_H], accum_dtype)
            logsum_0 = T.alloc_fragment([block_H], accum_dtype)
            logsum_1 = T.alloc_fragment([block_H], accum_dtype)

            cur_kv_head = hid // (kv_group_num // block_H)

86
            T.annotate_layout({
87
88
                O_shared_l: tilelang.layout.make_swizzled_layout(O_shared_l),
                O_shared_r: tilelang.layout.make_swizzled_layout(O_shared_r),
89
            })
90

91
92
93
94
            # barriers_Q
            q_shared_ready_barrier = T.alloc_barrier(arrive_count=256)

            # barriers_K0
95
96
97
            kv_shared_0_l_is_ready = T.alloc_barrier(arrive_count=128)
            kv_shared_0_r_is_ready = T.alloc_barrier(arrive_count=128)
            kv_shared_0_pe_is_ready = T.alloc_barrier(arrive_count=128)
98
            # barriers_K1
99
100
101
            kv_shared_1_l_is_ready = T.alloc_barrier(arrive_count=128)
            kv_shared_1_r_is_ready = T.alloc_barrier(arrive_count=128)
            kv_shared_1_pe_is_ready = T.alloc_barrier(arrive_count=128)
102
103

            # redundant barriers
104
105
106
107
108
109
110
111
112
113
114
115
116
117
            score_max_0_ready_barrier = T.alloc_barrier(arrive_count=128)
            scale_1_ready_barrier = T.alloc_barrier(arrive_count=128)
            p0_1_1_ready_barrier = T.alloc_barrier(arrive_count=128)
            lse_0_ready_barrier = T.alloc_barrier(arrive_count=128)
            lse_1_ready_barrier = T.alloc_barrier(arrive_count=128)
            s_shared_ready_barrier = T.alloc_barrier(arrive_count=128)

            tx = T.get_thread_binding()

            T.copy(Q[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H, :h_dim], Q_shared_l)
            T.copy(Q[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H, h_dim:], Q_shared_r)
            T.copy(Q_pe[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H, :], Q_pe_shared)
            T.barrier_arrive(q_shared_ready_barrier)
            T.barrier_wait(q_shared_ready_barrier, 0)
118

119
120
121
122
123
            T.fill(scores_max, -T.infinity(accum_dtype))

            loop_range = T.ceildiv(seqlen_kv, (block_N * 2))

            if tx < 128:
124
                T.copy(Q_pe_shared, Q_pe_local_0)
125
126
127
128
129
130
131
132
133
134
135
136
                T.fill(acc_o_l, 0)
                T.fill(logsum_0, 0)

                T.copy(KV[bid, block_N:2 * block_N, cur_kv_head, :h_dim], KV_shared_1_l)
                T.barrier_arrive(kv_shared_1_l_is_ready)

                T.copy(KV[bid, block_N:2 * block_N, cur_kv_head, h_dim:], KV_shared_1_r)
                T.barrier_arrive(kv_shared_1_r_is_ready)

                T.copy(K_pe[bid, block_N:2 * block_N, cur_kv_head, :], K_pe_shared_1)
                T.barrier_arrive(kv_shared_1_pe_is_ready)

137
                for k in T.serial(loop_range):
138
139
140
141
142
143
144
145
146
147

                    T.barrier_wait(kv_shared_0_l_is_ready, k % 2)
                    T.gemm(
                        Q_shared_l,
                        KV_shared_0_l,
                        acc_s_0,
                        transpose_B=True,
                        clear_accum=True,
                        wg_wait=-1)
                    T.barrier_wait(kv_shared_0_r_is_ready, k % 2)
148
                    T.gemm(Q_shared_r, KV_shared_0_r, acc_s_0, transpose_B=True, wg_wait=-1)
149
150

                    T.barrier_wait(kv_shared_0_pe_is_ready, k % 2)
151
                    T.gemm(Q_pe_local_0, K_pe_shared_0, acc_s_0, transpose_B=True, wg_wait=-1)
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

                    T.wait_wgmma(0)

                    # Step 3.
                    T.copy(scores_max, scores_max_0)
                    T.copy(scores_max_0, scores_max_prev_0)
                    T.fill(scores_max_0, -T.infinity(accum_dtype))
                    T.reduce_max(acc_s_0, scores_max_0, dim=1, clear=False)
                    T.copy(scores_max_0, scores_max)

                    # Step 4.
                    for i, j in T.Parallel(block_H, block_N):
                        acc_s_0[i, j] = T.exp2(acc_s_0[i, j] * scale - scores_max[i] * scale)
                    for i in T.Parallel(block_H):
                        scores_scale_0[i] = T.exp2(scores_max_prev_0[i] * scale -
                                                   scores_max[i] * scale)

                    T.reduce_sum(acc_s_0, scores_sum_0, dim=1)

                    # Step 5.
172
                    T.copy(acc_s_0, acc_s_0_cast)
173
174
175
176
177
178
179
180

                    for i, j in T.Parallel(block_H, h_dim):
                        acc_o_l[i, j] *= scores_scale_0[i]

                    for i in T.Parallel(block_H):
                        logsum_0[i] = logsum_0[i] * scores_scale_0[i] + scores_sum_0[i]

                    # Step 6.
181
                    T.gemm(acc_s_0_cast, KV_shared_0_l, acc_o_l)
182
183
184
185
186
187
188
189
190
191
192
193
                    T.barrier_arrive(score_max_0_ready_barrier)

                    T.barrier_wait(scale_1_ready_barrier, k % 2)

                    if k < loop_range - 1:
                        T.copy(
                            KV[bid, (2 * k + 2) * block_N:(2 * k + 3) * block_N,
                               cur_kv_head, :h_dim], KV_shared_0_l)
                        T.barrier_arrive(kv_shared_0_l_is_ready)

                    # Step 11.
                    for i, j in T.Parallel(block_H, block_N):
194
                        SP0_shared[i, j] = acc_s_0[i, j] * scores_scale_1[i]
195
196
197
198
199
200
201
202
203
204
205

                    T.barrier_arrive(p0_1_1_ready_barrier)

                    # Step 13.
                    for i, j in T.Parallel(block_H, h_dim):
                        acc_o_l[i, j] *= scores_scale_1[i]
                    for i in T.Parallel(block_H):
                        logsum_0[i] = logsum_0[i] * scores_scale_1[i]
                    T.barrier_wait(s_shared_ready_barrier, k % 2)

                    # Step 14.
206
                    T.gemm(SP1_shared, KV_shared_1_l, acc_o_l)
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

                    if k < loop_range - 1:

                        T.copy(
                            KV[bid, (2 * k + 3) * block_N:(2 * k + 4) * block_N,
                               cur_kv_head, :h_dim], KV_shared_1_l)
                        T.barrier_arrive(kv_shared_1_l_is_ready)

                        T.copy(
                            K_pe[bid, (2 * k + 3) * block_N:(2 * k + 4) * block_N, cur_kv_head, :],
                            K_pe_shared_1)
                        T.barrier_arrive(kv_shared_1_pe_is_ready)

                T.copy(logsum_0, logsum)
                T.barrier_arrive(lse_0_ready_barrier)
                T.barrier_wait(lse_1_ready_barrier, 0)
                for i, j in T.Parallel(block_H, h_dim):
                    acc_o_l[i, j] /= logsum[i]
                T.copy(acc_o_l, O_shared_l)
                T.copy(O_shared_l, Output[bid,
                                          hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H, :h_dim])

            else:
230
                T.copy(Q_pe_shared, Q_pe_local_1)
231
232
233
234
235
236
237
238
239
240
                T.fill(acc_o_r, 0)
                T.fill(logsum_1, 0)

                T.copy(KV[bid, :block_N, cur_kv_head, :h_dim], KV_shared_0_l)
                T.barrier_arrive(kv_shared_0_l_is_ready)
                T.copy(KV[bid, :block_N, cur_kv_head, h_dim:], KV_shared_0_r)
                T.barrier_arrive(kv_shared_0_r_is_ready)
                T.copy(K_pe[bid, :block_N, cur_kv_head, :], K_pe_shared_0)
                T.barrier_arrive(kv_shared_0_pe_is_ready)

241
                for k in T.serial(loop_range):
242
243
244

                    # Step 2.
                    T.barrier_wait(kv_shared_1_l_is_ready, k % 2)
245
                    T.gemm(
246
247
248
                        Q_shared_l,
                        KV_shared_1_l,
                        acc_s_1,
249
                        transpose_B=True,
250
251
252
253
                        clear_accum=True,
                        wg_wait=-1)

                    T.barrier_wait(kv_shared_1_r_is_ready, k % 2)
254
                    T.gemm(Q_shared_r, KV_shared_1_r, acc_s_1, transpose_B=True, wg_wait=-1)
255
256

                    T.barrier_wait(kv_shared_1_pe_is_ready, k % 2)
257
                    T.gemm(Q_pe_local_1, K_pe_shared_1, acc_s_1, transpose_B=True, wg_wait=-1)
258
259
260
261
262
263
264
265
266
267
268

                    T.wait_wgmma(0)

                    # Step 7.
                    T.barrier_wait(score_max_0_ready_barrier, k % 2)

                    T.copy(scores_max, scores_max_prev_1)
                    T.fill(scores_max_1, -T.infinity(accum_dtype))
                    T.reduce_max(acc_s_1, scores_max_1, dim=1, clear=False)
                    T.copy(scores_max_1, scores_max)

269
                    for i in T.Parallel(block_H):
270
271
272
273
                        scores_scale_1[i] = T.exp2(scores_max_prev_1[i] * scale -
                                                   scores_max[i] * scale)

                    # Step 8.
274
                    for i, j in T.Parallel(block_H, block_N):
275
276
277
278
279
280
281
282
                        acc_s_1[i, j] = T.exp2(acc_s_1[i, j] * scale - scores_max[i] * scale)

                    # Step 9.
                    T.reduce_sum(acc_s_1, scores_sum_1, dim=1)

                    for i, j in T.Parallel(block_H, h_dim):
                        acc_o_r[i, j] = acc_o_r[i, j] * (scores_scale_0[i] * scores_scale_1[i])

283
                    for i in T.Parallel(block_H):
284
285
286
287
288
289
                        logsum_1[i] = logsum_1[i] * scores_scale_1[i] * scores_scale_0[
                            i] + scores_sum_1[i]

                    T.barrier_arrive(scale_1_ready_barrier)

                    # Step 10. compute O1 with KV_shared_1_rd
290
                    T.copy(acc_s_1, acc_s_1_cast)
291
                    T.gemm(acc_s_1_cast, KV_shared_1_r, acc_o_r, wg_wait=-1)
292
293
                    T.copy(acc_s_1_cast, SP1_shared)
                    T.barrier_arrive(s_shared_ready_barrier)
294
295
296
297
298
299
300
301
302

                    if k < loop_range - 1:
                        T.copy(
                            KV[bid, (2 * k + 3) * block_N:(2 * k + 4) * block_N, cur_kv_head,
                               h_dim:], KV_shared_1_r)
                        T.barrier_arrive(kv_shared_1_r_is_ready)

                    T.barrier_wait(p0_1_1_ready_barrier, k % 2)
                    # Step 12.
303
                    T.gemm(SP0_shared, KV_shared_0_r, acc_o_r)
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

                    if k < loop_range - 1:

                        T.copy(
                            KV[bid, (2 * k + 2) * block_N:(2 * k + 3) * block_N, cur_kv_head,
                               h_dim:], KV_shared_0_r)
                        T.barrier_arrive(kv_shared_0_r_is_ready)

                        T.copy(
                            K_pe[bid, (2 * k + 2) * block_N:(2 * k + 3) * block_N, cur_kv_head, :],
                            K_pe_shared_0)
                        T.barrier_arrive(kv_shared_0_pe_is_ready)

                T.barrier_wait(lse_0_ready_barrier, 0)
                for i in T.Parallel(block_H):
                    logsum[i] += logsum_1[i]
                T.barrier_arrive(lse_1_ready_barrier)
                for i, j in T.Parallel(block_H, h_dim):
                    acc_o_r[i, j] /= logsum[i]
                T.copy(acc_o_r, O_shared_r)
                T.copy(O_shared_r, Output[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H,
                                          h_dim:])
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

    @T.prim_func
    def main_no_split(
            Q: T.Tensor([batch, heads, dim], dtype),
            Q_pe: T.Tensor([batch, heads, pe_dim], dtype),
            KV: T.Tensor([batch, seqlen_kv, kv_head_num, dim], dtype),
            K_pe: T.Tensor([batch, seqlen_kv, kv_head_num, pe_dim], dtype),
            glse: T.Tensor([batch, heads, num_split], dtype),
            Output_partial: T.Tensor([batch, heads, num_split, dim], dtype),
            Output: T.Tensor([batch, heads, dim], dtype),
    ):
        flash_attn(Q, Q_pe, KV, K_pe, Output)

    return main_no_split


def ref_program(q, q_pe, kv, k_pe, glse, Output_partial):
    #     """
    #     Inputs:
    #     - q (Tensor): [batch, heads, dim]
    #     - q_pe (Tensor): [batch, heads, pe_dim]
    #     - kv (Tensor): [batch, seqlen_kv, kv_head_num, dim]
    #     - k_pe (Tensor): [batch, seqlen_kv, kv_head_num, pe_dim]
    #     - glse (Tensor): [batch, heads, num_split]
    #     - Output_partial (Tensor): [batch, heads, num_split, dim]
    #     Outputs:
    #     - output (Tensor): [batch, heads, dim]
    #     """
    dim = q.shape[-1]
    pe_dim = q_pe.shape[-1]
    num_head_groups = q.shape[1] // kv.shape[2]
    scale = (dim + pe_dim)**0.5
    q = rearrange(
        q, 'b (h g) d -> b g h d', g=num_head_groups)  # [batch_size, num_head_groups, groups, dim]

    q_pe = rearrange(
        q_pe, 'b (h g) d -> b g h d',
        g=num_head_groups)  # [batch_size, num_head_groups, groups, pe_dim]

    kv = rearrange(kv, 'b n h d -> b h n d')  # [batch_size, groups, seqlen_kv, dim]

    k_pe = rearrange(k_pe, 'b n h d -> b h n d')  # [batch_size, num_head_groups, groups, pe_dim]

    query = torch.concat([q, q_pe], dim=-1)
    key = torch.concat([kv, k_pe], dim=-1)

    scores = einsum(
        query, key,
        'b g h d, b h s d -> b g h s')  # [batch_size, num_head_groups, groups, seqlen_kv]

    attention = F.softmax(
        scores / scale, dim=-1)  # [batch_size, num_head_groups, groups, seqlen_kv]

    out = einsum(attention, kv,
                 'b g h s, b h s d -> b g h d')  # [batch_size, num_head_groups, groups, dim]
    out = rearrange(out, 'b g h d -> b (h g) d')  # [batch_size, heads, dim]
    return out


385
def main(batch=1, heads=64, kv_heads=1, kv_ctx=1024, dim=512, pe_dim=64):
386
387
388
389
390
391
392
    qk_flops = 2 * batch * heads * kv_ctx * (dim + pe_dim)
    pv_flops = 2 * batch * heads * kv_ctx * dim
    total_flops = qk_flops + pv_flops
    BLOCK_N = 64
    BLOCK_H = 64
    num_split = 1

393
    kernel = flashattn(batch, heads, kv_heads, kv_ctx, dim, pe_dim, BLOCK_N, BLOCK_H, num_split)
394
    print(kernel.get_kernel_source())
395
396
397
398
399
400
401
402
    profiler = kernel.get_profiler(tensor_supply_type=tilelang.TensorSupplyType.Randn)
    profiler.assert_allclose(ref_program, rtol=0.01, atol=0.01)
    latency = profiler.do_bench(warmup=500)
    print(f"Latency: {latency} ms")
    print(f"TFlops: {total_flops / latency * 1e-9} TFlops")


if __name__ == "__main__":
403
    parser = argparse.ArgumentParser()
404
    parser.add_argument('--batch', type=int, default=1, help='batch size')
405
406
407
408
409
410
411
412
    parser.add_argument('--heads', type=int, default=128, help='q heads number')
    parser.add_argument('--kv_heads', type=int, default=1, help='kv heads number')
    parser.add_argument('--kv_ctx', type=int, default=8192, help='kv context length')
    parser.add_argument('--dim', type=int, default=512, help='head dim')
    parser.add_argument('--pe_dim', type=int, default=64, help='pe head dim')
    args = parser.parse_args()
    batch, heads, kv_heads, kv_ctx, dim, pe_dim = args.batch, args.heads, args.kv_heads, args.kv_ctx, args.dim, args.pe_dim
    main(batch, heads, kv_heads, kv_ctx, dim, pe_dim)