"vscode:/vscode.git/clone" did not exist on "fe9a42f1065da27f6405d3cdc95eaa4a8abfb360"
example_linear_attn_bwd.py 7.24 KB
Newer Older
1
2
3
4
5
6
7
8
9
import torch
import tilelang as tl
import tilelang.language as T
from tilelang.profiler import do_bench

import argparse
from fla.ops.linear_attn import fused_chunk_linear_attn  # We compare with FLA


10
@tl.jit(out_idx=[4, 5, 6])
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
def chunk_linear_attn_bwd_kernel(
    B,
    S,
    H,
    DK,
    DV,
    dtype: str = 'float16',
    scale: float = None,
) -> torch.Tensor:

    if scale is None:
        scale = DK**-0.5
    accum_dtype = 'float'

    chunk_size = 64
    BK = BV = 64
    assert S % chunk_size == 0 and DK % BK == 0 and DV % BV == 0
    NK = tl.cdiv(DK, BK)
    NV = tl.cdiv(DV, BV)
    NT = tl.cdiv(S, chunk_size)

    @T.prim_func
    def main(
            Q: T.Tensor([B, S, H, DK], dtype),
            K: T.Tensor([B, S, H, DK], dtype),
            V: T.Tensor([B, S, H, DV], dtype),
            dO: T.Tensor([B, S, H, DV], dtype),
            dQ: T.Tensor([NV, B, S, H, DK], dtype),
            dK: T.Tensor([NV, B, S, H, DK], dtype),
            dV: T.Tensor([NK, B, S, H, DV], dtype),
    ):
        with T.Kernel(NV, NK, B * H) as (i_v, i_k, i_bh):
            i_b = i_bh // H
            i_h = i_bh % H

            ds = T.alloc_fragment([chunk_size, chunk_size], accum_dtype)
            ds_shared = T.alloc_shared([chunk_size, chunk_size], dtype)
            dq = T.alloc_fragment([chunk_size, BK], accum_dtype)
            dk = T.alloc_fragment([chunk_size, BK], accum_dtype)
            dv = T.alloc_fragment([chunk_size, BV], accum_dtype)
            q = T.alloc_shared([chunk_size, BK], dtype)
            k = T.alloc_shared([chunk_size, BK], dtype)
            v = T.alloc_shared([chunk_size, BV], dtype)
            do = T.alloc_shared([chunk_size, BV], dtype)
            h = T.alloc_fragment([BV, BK], accum_dtype)
            h_shared = T.alloc_shared([BV, BK], dtype)
            dh = T.alloc_fragment([BK, BV], accum_dtype)
            dh_shared = T.alloc_shared([BK, BV], dtype)
            T.clear(h)
            T.clear(dh)

            T.annotate_layout({
                ds_shared: tl.layout.make_swizzled_layout(ds_shared),
                q: tl.layout.make_swizzled_layout(q),
                k: tl.layout.make_swizzled_layout(k),
                v: tl.layout.make_swizzled_layout(v),
                do: tl.layout.make_swizzled_layout(do),
                h_shared: tl.layout.make_swizzled_layout(h_shared),
                dh_shared: tl.layout.make_swizzled_layout(dh_shared)
            })

            # Calculate dQ
            for i in T.Pipelined(0, NT, num_stages=1):
                T.copy(K[i_b, i * chunk_size:(i + 1) * chunk_size, i_h, i_k * BK:(i_k + 1) * BK], k)
                T.copy(V[i_b, i * chunk_size:(i + 1) * chunk_size, i_h, i_v * BV:(i_v + 1) * BV], v)
                T.copy(dO[i_b, i * chunk_size:(i + 1) * chunk_size, i_h, i_v * BV:(i_v + 1) * BV],
                       do)

                T.gemm(do, v, ds, transpose_B=True, clear_accum=True)
                for row, col in T.Parallel(chunk_size, chunk_size):
                    ds_shared[row, col] = T.if_then_else(row >= col, ds[row, col], 0)

                T.gemm(ds_shared, k, dq, clear_accum=True)
                T.copy(h, h_shared)
                T.gemm(do, h_shared, dq)
                T.gemm(v, k, h, transpose_A=True)
                for row, col in T.Parallel(chunk_size, BK):
                    dq[row, col] *= scale
                T.copy(
                    dq, dQ[i_v, i_b, i * chunk_size:(i + 1) * chunk_size, i_h,
                           i_k * BK:(i_k + 1) * BK])

            # Calculate dK, dV (reversely)
            for i in T.Pipelined(1, NT + 1, num_stages=1):
                start = NT - i
                for row, col in T.Parallel(chunk_size, BK):
                    q[row, col] = Q[i_b, start * chunk_size + row, i_h, i_k * BK + col] * scale
                T.copy(
                    K[i_b, start * chunk_size:(start + 1) * chunk_size, i_h,
                      i_k * BK:(i_k + 1) * BK], k)
                T.copy(
                    V[i_b, start * chunk_size:(start + 1) * chunk_size, i_h,
                      i_v * BV:(i_v + 1) * BV], v)
                T.copy(
                    dO[i_b, start * chunk_size:(start + 1) * chunk_size, i_h,
                       i_v * BV:(i_v + 1) * BV], do)
                T.copy(dh, dh_shared)

                # Calculate dk
                T.gemm(
                    v, do, ds, transpose_B=True, clear_accum=True
                )  # ds here actually means `s`, but we simply reuse the buffer `ds`
                for row, col in T.Parallel(chunk_size, chunk_size):
                    ds_shared[row, col] = T.if_then_else(row <= col, ds[row, col], 0)
                T.gemm(ds_shared, q, dk, clear_accum=True)
                T.gemm(v, dh_shared, dk, transpose_B=True)

                # Calculate dv
                T.gemm(k, q, ds, transpose_B=True, clear_accum=True)
                for row, col in T.Parallel(chunk_size, chunk_size):
                    ds_shared[row, col] = T.if_then_else(row <= col, ds[row, col], 0)
                T.gemm(ds_shared, do, dv, clear_accum=True)
                T.gemm(k, dh_shared, dv)

                # Update dh
                T.gemm(q, do, dh, transpose_A=True)

                T.copy(
                    dk, dK[i_v, i_b, start * chunk_size:(start + 1) * chunk_size, i_h,
                           i_k * BK:(i_k + 1) * BK])
                T.copy(
                    dv, dV[i_k, i_b, start * chunk_size:(start + 1) * chunk_size, i_h,
                           i_v * BV:(i_v + 1) * BV])

    return main


def postprocess(dQ, dK, dV):
    dQ = dQ[0] if dQ.size(0) == 1 else dQ.sum(0)
    dK = dK[0] if dK.size(0) == 1 else dK.sum(0)
    dV = dV[0] if dV.size(0) == 1 else dV.sum(0)
    return dQ, dK, dV


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--B', type=int, default=8, help='Batch size')
    parser.add_argument('--S', type=int, default=2048, help='Seq len')
    parser.add_argument('--H', type=int, default=64, help='Num heads')
    parser.add_argument('--D', type=int, default=256, help='Head dim')
    args = parser.parse_args()
    B, S, H, D = args.B, args.S, args.H, args.D

    q = torch.randn((B, S, H, D), device='cuda', dtype=torch.float16, requires_grad=True)
    k = torch.randn((B, S, H, D), device='cuda', dtype=torch.float16, requires_grad=True)
    v = torch.randn((B, S, H, D), device='cuda', dtype=torch.float16, requires_grad=True)
    do = torch.randn((B, S, H, D), device='cuda', dtype=torch.float16)

159
    kernel = chunk_linear_attn_bwd_kernel(B, S, H, D, D)
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    dq, dk, dv = postprocess(*kernel(q, k, v, do))
    o_ref, h_ref = fused_chunk_linear_attn(q, k, v, output_final_state=True, normalize=False)
    o_ref.backward(do, retain_graph=True)
    if torch.allclose(dq, q.grad) and torch.allclose(dk, k.grad) and torch.allclose(dv, v.grad):
        print('Passed all tests!✅')
    else:
        print('Failed some tests!❌')
    t1 = do_bench(lambda: o_ref.backward(do, retain_graph=True), warmup=25, rep=100)
    q.grad = k.grad = v.grad = None
    o_ref, h_ref = fused_chunk_linear_attn(q, k, v, output_final_state=True, normalize=False)
    t2 = do_bench(lambda: postprocess(*kernel(q, k, v, do)), warmup=25, rep=100)
    print(f'Triton latency: {t1:.3f} ms')
    print(f'TileLang latency: {t2:.3f} ms')
    print(f'Speedup: {t1/t2:.3f}x')


if __name__ == '__main__':
    main()