example_mha_inference.py 14.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import torch
import torch.nn.functional as F
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
from functools import partial

num_split = 4


11
@tilelang.jit(out_idx=[5], pass_configs={tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True})
12
def flashattn(batch, heads, seqlen_q, seqlen_kv, dim, is_causal, block_M, block_N):
13
14
15
16
17
18
19
20
21
    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    shape_q = [batch, seqlen_q, heads, dim]
    shape_kv = [batch, seqlen_kv, heads, dim]
    part_shape = [batch, seqlen_q, heads, num_split, dim]
    dtype = "float16"
    accum_dtype = "float"

    @T.macro
    def MMA0(
22
23
24
25
        K: T.Tensor(shape_kv, dtype),
        Q_shared: T.SharedBuffer([block_M, dim], dtype),
        K_shared: T.SharedBuffer([block_N, dim], dtype),
        acc_s: T.FragmentBuffer([block_M, block_N], accum_dtype),
26
27
28
29
30
31
32
33
34
        k: T.int32,
        mid: T.int32,
        hid: T.int32,
        bid: T.int32,
        sid: T.int32,
    ):
        T.copy(
            K[bid, (seqlen_kv // num_split) * sid + k * block_N:(seqlen_kv // num_split) * sid +
              (k + 1) * block_N, hid, :], K_shared)
35
36
        # TODO: Handle causal split case
        if is_causal:
37
38
39
40
41
42
43
44
45
            for i, j in T.Parallel(block_M, block_N):
                acc_s[i, j] = T.if_then_else(mid * block_M + i >= k * block_N + j, 0,
                                             -T.infinity(acc_s.dtype))
        else:
            T.clear(acc_s)
        T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)

    @T.macro
    def MMA1(
46
47
48
49
        V: T.Tensor(shape_kv, dtype),
        V_shared: T.SharedBuffer([block_M, dim], dtype),
        acc_s_cast: T.FragmentBuffer([block_M, block_N], dtype),
        acc_o: T.FragmentBuffer([block_M, dim], accum_dtype),
50
51
52
53
54
55
56
57
58
59
60
61
        k: T.int32,
        hid: T.int32,
        bid: T.int32,
        sid: T.int32,
    ):
        T.copy(
            V[bid, (seqlen_kv // num_split) * sid + k * block_N:(seqlen_kv // num_split) * sid +
              (k + 1) * block_N, hid, :], V_shared)
        T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)

    @T.macro
    def Softmax(
62
63
64
65
66
67
68
            acc_s: T.FragmentBuffer([block_M, block_N], accum_dtype),
            acc_s_cast: T.FragmentBuffer([block_M, block_N], dtype),
            scores_max: T.FragmentBuffer([block_M], accum_dtype),
            scores_max_prev: T.FragmentBuffer([block_M], accum_dtype),
            scores_scale: T.FragmentBuffer([block_M], accum_dtype),
            scores_sum: T.FragmentBuffer([block_M], accum_dtype),
            logsum: T.FragmentBuffer([block_M], accum_dtype),
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    ):
        T.copy(scores_max, scores_max_prev)
        T.fill(scores_max, -T.infinity(accum_dtype))
        T.reduce_max(acc_s, scores_max, dim=1, clear=False)
        # To do causal softmax, we need to set the scores_max to 0 if it is -inf
        # This process is called Check_inf in FlashAttention3 code, and it only need to be done
        # in the first ceil_div(kBlockM, kBlockN) steps.
        # for i in T.Parallel(block_M):
        #     scores_max[i] = T.if_then_else(scores_max[i] == -T.infinity(accum_dtype), 0, scores_max[i])
        for i in T.Parallel(block_M):
            scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
        for i, j in T.Parallel(block_M, block_N):
            # Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
            # max * log_2(e)) This allows the compiler to use the ffma
            # instruction instead of fadd and fmul separately.
            acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
        T.reduce_sum(acc_s, scores_sum, dim=1)
        for i in T.Parallel(block_M):
            logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
        T.copy(acc_s, acc_s_cast)

    @T.macro
    def Rescale(
92
93
            acc_o: T.FragmentBuffer([block_M, dim], accum_dtype),
            scores_scale: T.FragmentBuffer([block_M], accum_dtype),
94
95
96
97
98
99
    ):
        for i, j in T.Parallel(block_M, dim):
            acc_o[i, j] *= scores_scale[i]

    @T.macro
    def flash_attn_split(
100
101
102
103
104
            Q: T.Tensor(shape_q, dtype),
            K: T.Tensor(shape_kv, dtype),
            V: T.Tensor(shape_kv, dtype),
            glse: T.Tensor([batch, heads, num_split, seqlen_q], dtype),
            Output_partial: T.Tensor(part_shape, dtype),
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    ):
        with T.Kernel(
                T.ceildiv(seqlen_q, block_M), heads * batch, num_split,
                threads=128) as (bx, by, bz):
            Q_shared = T.alloc_shared([block_M, dim], dtype)
            K_shared = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_N, dim], dtype)
            O_shared = T.alloc_shared([block_M, dim], dtype)
            acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
            acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
            scores_max = T.alloc_fragment([block_M], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
            scores_scale = T.alloc_fragment([block_M], accum_dtype)
            scores_sum = T.alloc_fragment([block_M], accum_dtype)
            logsum = T.alloc_fragment([block_M], accum_dtype)

            mid = bx
            hid = by % heads
            bid = by // heads
            sid = bz

            T.copy(Q[bid, mid * block_M:(mid + 1) * block_M, hid, :], Q_shared)
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))

132
            # TODO: Handle causal split case
133
134
            loop_range = (
                T.min(T.ceildiv(seqlen_kv, block_N), T.ceildiv(
135
                    (mid + 1) * block_M, block_N)) if is_causal else T.ceildiv(
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
                        (seqlen_kv // num_split), block_N))

            for k in T.Pipelined(loop_range, num_stages=2):
                MMA0(K, Q_shared, K_shared, acc_s, k, mid, hid, bid, sid)
                Softmax(acc_s, acc_s_cast, scores_max, scores_max_prev, scores_scale, scores_sum,
                        logsum)
                Rescale(acc_o, scores_scale)
                MMA1(V, V_shared, acc_s_cast, acc_o, k, hid, bid, sid)
            for i, j in T.Parallel(block_M, dim):
                acc_o[i, j] /= logsum[i]
            for i in T.Parallel(block_M):
                logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale
            T.copy(logsum, glse[bid, hid, sid, mid * block_M:(mid + 1) * block_M])
            T.copy(acc_o, O_shared)
            T.copy(O_shared, Output_partial[bid, mid * block_M:(mid + 1) * block_M, hid, sid, :])

    @T.macro
    def combine(
154
155
156
            glse: T.Tensor([batch, heads, num_split, seqlen_q], dtype),
            Output_partial: T.Tensor(part_shape, dtype),
            Output: T.Tensor(shape_q, dtype),
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    ):
        with T.Kernel(T.ceildiv(seqlen_q, block_M), heads, batch, threads=128) as (bx, by, bz):
            po_local = T.alloc_fragment([block_M, dim], dtype)
            po_shared = T.alloc_shared([block_M, dim], dtype)
            o_accum_local = T.alloc_fragment([block_M, dim], accum_dtype)
            o_shared = T.alloc_shared([block_M, dim], dtype)
            lse_local = T.alloc_fragment([num_split, block_M], dtype)
            lse_local_split = T.alloc_fragment([block_M], accum_dtype)
            lse_logsum_local = T.alloc_fragment([block_M], accum_dtype)
            lse_max_local = T.alloc_fragment([block_M], accum_dtype)
            scale_local = T.alloc_fragment([block_M], accum_dtype)

            T.annotate_layout({
                o_accum_local: T.Fragment(o_accum_local.shape, forward_thread_fn=lambda i, j: i),
                o_shared: tilelang.layout.make_swizzled_layout(o_shared),
                po_shared: tilelang.layout.make_swizzled_layout(po_shared),
            })

            T.clear(lse_logsum_local)
            T.clear(o_accum_local)
            T.copy(glse[
                bz,
                by,
                :,
                bx * block_M:(bx + 1) * block_M,
            ], lse_local)
            T.reduce_max(lse_local, lse_max_local, dim=0, clear=False)
            for k in T.Pipelined(num_split):
                T.copy(lse_local[k, :], lse_local_split)
                for i in T.Parallel(block_M):
                    lse_logsum_local[i] += T.exp2(lse_local_split[i] - lse_max_local[i])
            for i in T.Parallel(block_M):
                lse_logsum_local[i] = T.log2(lse_logsum_local[i]) + lse_max_local[i]
            for k in T.Pipelined(num_split, num_stages=2):
                T.copy(Output_partial[bz, bx * block_M:(bx + 1) * block_M, by, k, :], po_shared)
                T.copy(po_shared, po_local)
193
194
                for i in T.Parallel(block_M):
                    lse_local_split[i] = lse_local[k, i]
195
196
197
198
199
200
201
202
                for i in T.Parallel(block_M):
                    scale_local[i] = T.exp2(lse_local_split[i] - lse_logsum_local[i])
                for i, j in T.Parallel(block_M, dim):
                    o_accum_local[i, j] += po_local[i, j] * scale_local[i]
            T.copy(o_accum_local, o_shared)
            T.copy(o_shared, Output[bz, bx * block_M:(bx + 1) * block_M, by, :])

    @T.prim_func
203
    def flashattn_mha_inference(
204
205
206
207
208
209
            Q: T.Tensor(shape_q, dtype),
            K: T.Tensor(shape_kv, dtype),
            V: T.Tensor(shape_kv, dtype),
            glse: T.Tensor([batch, heads, num_split, seqlen_q], dtype),
            Output_partial: T.Tensor(part_shape, dtype),  # [batch, seqlen_q, heads, num_split, dim]
            Output: T.Tensor(shape_q, dtype),
210
211
212
213
    ):
        flash_attn_split(Q, K, V, glse, Output_partial)
        combine(glse, Output_partial, Output)

214
    return flashattn_mha_inference
215
216


217
218
def ref_program(Q, K, V, glse, Output_partial, causal):
    assert causal is False
219
220
221
222
223
224
225
226
    dim = Q.size(-1)
    scores = torch.einsum('bqhd,bkhd->bhqk', Q, K)
    scores = scores / torch.sqrt(torch.tensor(dim, dtype=scores.dtype))
    attention_weights = F.softmax(scores, dim=-1)
    output = torch.einsum('bhqk,bkhd->bqhd', attention_weights, V)
    return output


227
def reduce_ref(Q, K, V, glse, Output_partial, causal):
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    o = torch.empty_like(Output_partial[:, :, :, 0, :]).fill_(0)
    lse_logsum = torch.empty_like(glse[:, :, 0, :]).fill_(0)  # [batch, seqlen_q, heads]
    lse_max = glse.max(dim=2, keepdim=False).values
    for ks in range(num_split):
        lse = glse[:, :, ks, :]
        lse_logsum += torch.exp2(lse - lse_max)
    lse_logsum = torch.log2(lse_logsum) + lse_max
    for ks in range(num_split):
        lse = glse[:, :, ks, :]
        scale = torch.exp2(lse - lse_logsum)  # [batch, heads, seqlen_q]
        o += Output_partial[:, :, :, ks, :] * scale[:, :, :, None].transpose(1, 2)
    return o.to(torch.float16)


242
def flash_split_ref(Q, K, V, causal):
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    # [batch, seqlen_q, heads, dim]
    batch = Q.size(0)
    block_M = Q.size(1)
    nheads = Q.size(2)
    dim = Q.size(3)
    block_N = 128
    seqlen_kv = K.size(1)

    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    acc_s = torch.empty((batch, nheads, block_M, block_N), device="cuda", dtype=torch.float)
    acc_s_cast = torch.empty((batch, nheads, block_M, block_N), device="cuda", dtype=torch.float16)
    acc_o = torch.empty((batch, block_M, nheads, dim), device="cuda", dtype=torch.float)
    scores_max = torch.empty((batch, nheads, block_M), device="cuda", dtype=torch.float)
    scores_max_prev = torch.empty((batch, nheads, block_M), device="cuda", dtype=torch.float)
    scores_scale = torch.empty((batch, nheads, block_M), device="cuda", dtype=torch.float)
    scores_sum = torch.empty((batch, nheads, block_M), device="cuda", dtype=torch.float)
    logsum = torch.empty((batch, nheads, block_M), device="cuda", dtype=torch.float)
    gacc_o = torch.empty((num_split, batch, block_M, nheads, dim), device="cuda", dtype=torch.float)
    glogsum = torch.empty((num_split, batch, nheads, block_M), device="cuda", dtype=torch.float)

    Q_ = Q * scale

    for ks in range(num_split):
        acc_o.fill_(0)
        logsum.fill_(0)
        scores_max.fill_(float('-inf'))
        scores_max_prev.fill_(float('-inf'))
        for i in range(int((seqlen_kv // num_split) / block_N)):
            acc_s.fill_(0)
            acc_s = torch.einsum('bqhd,bkhd->bhqk', Q_,
                                 K[:, (seqlen_kv // num_split) * ks +
                                   i * block_N:(seqlen_kv // num_split) * ks +
                                   (i + 1) * block_N, :, :])  # [batch, seqlen, nheads, block_N]
            scores_max_prev = scores_max
            scores_max = acc_s.max(dim=-1, keepdim=False).values  # [blockM]
            scores_scale = torch.exp2(scores_max_prev - scores_max)
            acc_o *= scores_scale[:, :, :, None].transpose(1, 2)
            acc_s = torch.exp2(acc_s - scores_max[:, :, :, None])
            acc_s_cast = acc_s.to(torch.float16)
            acc_o += torch.einsum(
                'bhqk,bkhd->bqhd', acc_s_cast,
                V[:, (seqlen_kv // num_split) * ks + i * block_N:(seqlen_kv // num_split) * ks +
                  (i + 1) * block_N, :, :])
            scores_sum = acc_s.sum(dim=-1, keepdim=False)
            logsum = logsum * scores_scale + scores_sum
        acc_o /= logsum[:, :, :, None].transpose(1, 2)
        logsum = torch.log2(logsum) + scores_max
        gacc_o[ks, :, :, :, :] = acc_o
        glogsum[ks, :, :, :] = logsum

    return glogsum.to(torch.float16).permute(1, 2, 0,
                                             3), gacc_o.to(torch.float16).permute(1, 2, 3, 0, 4)


297
def main():
298
    BATCH, H, Q_CTX, KV_CTX, D_HEAD = 1, 32, 128, 8192, 128
299
    causal = False
300
301
    flops_per_matmul = 2.0 * BATCH * H * Q_CTX * KV_CTX * D_HEAD
    total_flops = 2 * flops_per_matmul
302
    if causal:
303
304
305
        total_flops *= 0.5
    BLOCK_M = 128
    BLOCK_N = 64  # if D_HEAD <= 128 else 32
306
    kernel = flashattn(BATCH, H, Q_CTX, KV_CTX, D_HEAD, causal, BLOCK_M, BLOCK_N)
307
    ref_fn = partial(ref_program, causal=causal)
308
309
    print(kernel.get_kernel_source())
    profiler = kernel.get_profiler(tensor_supply_type=tilelang.TensorSupplyType.Normal)
310
    profiler.assert_allclose(ref_fn, rtol=0.01, atol=0.01)
311
312
    print("All checks passed!")

313
    latency = profiler.do_bench(ref_fn, warmup=500)
314
315
    print("{:.2f} ms".format(latency))
    print("{:.2f} TFlops".format(total_flops / latency * 1e-9))
316
    latency = profiler.do_bench(n_warmup=10, n_repeat=10)
317
318
    print("{:.4f} ms".format(latency))
    print("{:.2f} TFlops".format(total_flops / latency * 1e-9))
319
320
321


if __name__ == "__main__":
322
    main()