example_tilelang_nsa.py 8.04 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.

import torch
from reference import naive_nsa
import tilelang
from tilelang import language as T
import tilelang.testing

tilelang.testing.set_random_seed(0)


def native_sparse_attention(batch,
                            heads,
                            seq_len,
                            dim,
                            is_causal,
                            scale=None,
                            groups=1,
                            selected_blocks=16):
    if scale is None:
        scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    head_kv = heads // groups
    q_shape = [batch, seq_len, heads, dim]
    kv_shape = [batch, seq_len, head_kv, dim]
    block_indices_shape = [batch, seq_len, head_kv, selected_blocks]
    block_indices_dtype = "int32"
    dtype = "float16"
    accum_dtype = "float"
    block_S = 64
    block_T = min(128, tilelang.math.next_power_of_2(dim))

    S = selected_blocks
    NS = S
    G = groups
    BS = block_S
    BK = BV = block_T
    num_stages = 0
    threads = 32

    def kernel_func(block_S, block_T, num_stages, threads):

        @T.macro
        def MMA0(
            K: T.Buffer(kv_shape, dtype),
            Q_shared: T.Buffer([G, BK], dtype),
            K_shared: T.Buffer([BS, BK], dtype),
            acc_s: T.Buffer([G, BS], accum_dtype),
            i_s: T.int32,
            i_b: T.int32,
            i_h: T.int32,
            i_t: T.int32,
        ):
            T.copy(K[i_b, i_s * BS:(i_s + 1) * BS, i_h, :], K_shared)

            if is_causal:
                for i, j in T.Parallel(G, BS):
                    acc_s[i, j] = T.if_then_else(i_t >= (i_s * BS + j), 0, -T.infinity(acc_s.dtype))
            else:
                T.clear(acc_s)
            T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)

        @T.macro
        def MMA1(
                V: T.Buffer(kv_shape, dtype),
                V_shared: T.Buffer([G, BV], dtype),
                acc_s_cast: T.Buffer([G, BS], dtype),
                acc_o: T.Buffer([G, BV], accum_dtype),
                i_s: T.int32,
                i_b: T.int32,
                i_h: T.int32,
        ):
            T.copy(V[i_b, i_s * BS:(i_s + 1) * BS, i_h, :], V_shared)
            T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)

        @T.macro
        def Softmax(
                acc_s: T.Buffer([G, BS], accum_dtype),
                acc_s_cast: T.Buffer([G, BS], dtype),
                scores_max: T.Buffer([G], accum_dtype),
                scores_max_prev: T.Buffer([G], accum_dtype),
                scores_scale: T.Buffer([G], accum_dtype),
                scores_sum: T.Buffer([G], accum_dtype),
                logsum: T.Buffer([G], accum_dtype),
        ):
            T.copy(scores_max, scores_max_prev)
            T.fill(scores_max, -T.infinity(accum_dtype))
            T.reduce_max(acc_s, scores_max, dim=1, clear=True)
            # To do causal softmax, we need to set the scores_max to 0 if it is -inf
            # This process is called Check_inf in FlashAttention3 code, and it only need to be done
            # in the first ceil_div(kBlockM, kBlockN) steps.
            # for i in T.Parallel(block_M):
            #     scores_max[i] = T.if_then_else(scores_max[i] == -T.infinity(accum_dtype), 0, scores_max[i])
            for i in T.Parallel(G):
                scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
            for i, j in T.Parallel(G, BS):
                # Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
                # max * log_2(e)) This allows the compiler to use the ffma
                # instruction instead of fadd and fmul separately.
                acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
            T.reduce_sum(acc_s, scores_sum, dim=1)
            for i in T.Parallel(G):
                logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
            T.copy(acc_s, acc_s_cast)

        @T.macro
        def Rescale(
                acc_o: T.Buffer([G, BV], accum_dtype),
                scores_scale: T.Buffer([G], accum_dtype),
        ):
            for i, j in T.Parallel(G, BV):
                acc_o[i, j] *= scores_scale[i]

        @T.prim_func
        def main(
                Q: T.Buffer(q_shape, dtype),
                K: T.Buffer(kv_shape, dtype),
                V: T.Buffer(kv_shape, dtype),
                BlockIndices: T.Buffer(block_indices_shape, block_indices_dtype),
                Output: T.Buffer(q_shape, dtype),
        ):
            with T.Kernel(
                    dim // block_T, seq_len, batch * head_kv, threads=threads) as (bx, by, bz):
                Q_shared = T.alloc_shared([G, BK], dtype)
                K_shared = T.alloc_shared([BS, BK], dtype)
                V_shared = T.alloc_shared([BS, BV], dtype)
                O_shared = T.alloc_shared([G, BV], dtype)

                acc_s = T.alloc_fragment([G, BS], accum_dtype)
                acc_s_cast = T.alloc_fragment([G, BS], dtype)
                acc_o = T.alloc_fragment([G, BV], accum_dtype)
                scores_max = T.alloc_fragment([G], accum_dtype)
                scores_max_prev = T.alloc_fragment([G], accum_dtype)
                scores_scale = T.alloc_fragment([G], accum_dtype)
                scores_sum = T.alloc_fragment([G], accum_dtype)
                logsum = T.alloc_fragment([G], accum_dtype)

                i_v, i_t, i_bh = bx, by, bz
                i_b, i_h = i_bh // heads, i_bh % heads

                T.copy(Q[i_b, i_t, i_h * G:(i_h + 1) * G, :], Q_shared)

                T.fill(acc_o, 0)
                T.fill(logsum, 0)
                T.fill(scores_max, -T.infinity(accum_dtype))

                for i in T.Pipelined(NS, num_stages=num_stages):
                    i_s = BlockIndices[i_b, i_t, i_h, i]
                    if i_s <= i_t:
                        MMA0(K, Q_shared, K_shared, acc_s, i_s, i_b, i_h, i_t)
                        Softmax(acc_s, acc_s_cast, scores_max, scores_max_prev, scores_scale,
                                scores_sum, logsum)
                        Rescale(acc_o, scores_scale)
                        MMA1(V, V_shared, acc_s_cast, acc_o, i_s, i_b, i_h)

                for i, j in T.Parallel(G, BV):
                    acc_o[i, j] /= logsum[i]
                T.copy(acc_o, O_shared)
                T.copy(O_shared, Output[i_b, i_t, i_h * G:(i_h + 1) * G, :])

        return main

    def kernel(block_S, block_T, num_stages, threads):
        return kernel_func(block_S, block_T, num_stages, threads)

    return kernel(block_S, block_T, num_stages, threads)


if __name__ == "__main__":
    B, SEQ_LEN, H, HQ, D, S, block_size, dtype, scale = 1, 64, 4, 64, 32, 16, 64, torch.float16, None

    program = native_sparse_attention(
        batch=B,
        heads=HQ,
        seq_len=SEQ_LEN,
        dim=D,
        is_causal=True,
        scale=scale,
        groups=HQ // H,
        selected_blocks=S,
    )
    kernel = tilelang.compile(program, out_idx=[4])

    Q = torch.randn((B, SEQ_LEN, HQ, D), dtype=dtype, device='cuda').requires_grad_(True)
    K = torch.randn((B, SEQ_LEN, H, D), dtype=dtype, device='cuda').requires_grad_(True)
    V = torch.randn((B, SEQ_LEN, H, D), dtype=dtype, device='cuda').requires_grad_(True)
    DO = torch.randn((B, SEQ_LEN, HQ, D), dtype=dtype, device='cuda')

    block_indices = torch.full((B, SEQ_LEN, H, S), SEQ_LEN, dtype=torch.long, device='cuda')
    for b in range(B):
        for t in range(SEQ_LEN):
            for h in range(H):
                i_i = torch.randperm(max(1, (t // block_size)))[:S]
                block_indices[b, t, h, :len(i_i)] = i_i
    block_indices = block_indices.sort(-1)[0]
    block_counts = torch.randint(1, S + 1, (B, SEQ_LEN, H), device='cuda')

    out = kernel(Q, K, V, block_indices.to(torch.int32))

    print(out)

    ref = naive_nsa(
        q=Q,
        k=K,
        v=V,
        block_indices=block_indices,
        block_counts=block_counts,
        block_size=block_size,
        scale=scale)

    print(ref)
    torch.testing.assert_close(ref, out, atol=1e-2, rtol=1e-2)