"test/git@developer.sourcefind.cn:OpenDAS/nni.git" did not exist on "97d067e614243f06ed1f8e2d389512977fff8828"
test_tilelang_jit_gemm.py 3.06 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.

from tilelang import tvm as tvm
import tilelang.testing
import tilelang
import torch


def matmul(
    M,
    N,
    K,
    block_M,
    block_N,
    block_K,
    trans_A,
    trans_B,
    in_dtype,
    out_dtype,
    accum_dtype,
    num_stages,
    threads,
):
    A_shape = (K, M) if trans_A else (M, K)
    B_shape = (N, K) if trans_B else (K, N)
    A_shared_shape = (block_K, block_M) if trans_A else (block_M, block_K)
    B_shared_shape = (block_N, block_K) if trans_B else (block_K, block_N)

    import tilelang.language as T

    @tilelang.jit(
        out_idx=-1,  # create the output tensor during runtime
        execution_backend="dl_pack",
    )
    @T.prim_func
    def main(
            A: T.Buffer(A_shape, in_dtype),
            B: T.Buffer(B_shape, in_dtype),
            C: T.Buffer((M, N), out_dtype),
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):
            A_shared = T.alloc_shared(A_shared_shape, in_dtype)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype)
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
            T.clear(C_local)
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                if trans_A:
                    T.copy(A[k * block_K, by * block_M], A_shared)
                else:
                    T.copy(A[by * block_M, k * block_K], A_shared)
                if trans_B:
                    T.copy(B[bx * block_N, k * block_K], B_shared)
                else:
                    T.copy(B[k * block_K, bx * block_N], B_shared)
                T.gemm(A_shared, B_shared, C_local, trans_A, trans_B)
            T.copy(C_local, C[by * block_M, bx * block_N])

    return main


def run_gemm(
    M,
    N,
    K,
    trans_A,
    trans_B,
    in_dtype,
    out_dtype,
    dtypeAccum,
    block_M,
    block_N,
    block_K,
    num_stages=3,
    num_threads=128,
):
    matmul_kernel = matmul(
        M,
        N,
        K,
        block_M,
        block_N,
        block_K,
        trans_A,
        trans_B,
        in_dtype,
        out_dtype,
        dtypeAccum,
        num_stages,
        num_threads,
    )

    A = torch.randn(M, K, dtype=torch.__getattribute__(in_dtype)).cuda()
    B = torch.randn(K, N, dtype=torch.__getattribute__(in_dtype)).cuda()

    if trans_A:
        A = A.T
    if trans_B:
        B = B.T

    def ref_program(A, B):
        import torch
        C = torch.matmul(A.to(torch.float), B.to(torch.float))
        C = C.to(torch.__getattribute__(out_dtype))
        return C

    ref_C = ref_program(A, B)
    C = matmul_kernel(A, B)

    tilelang.testing.torch_assert_close(C, ref_C, atol=1e-2, rtol=1e-2, max_mismatched_ratio=0.05)


def test_gemm_f16f16f16_nn():
    run_gemm(
        512,
        1024,
        768,
        False,
        False,
        "float16",
        "float16",
        "float16",
        128,
        256,
        32,
        2,
    )


if __name__ == "__main__":
    # tilelang.testing.main()
    test_gemm_f16f16f16_nn()