"vscode:/vscode.git/clone" did not exist on "0d1eab57704b3f5291c9fe486b6ac1f3410960c1"
pipeline_planning.cc 20.7 KB
Newer Older
1
#include <tvm/arith/analyzer.h>
2
#include <tvm/ffi/reflection/registry.h>
3
#include <tvm/tir/analysis.h>
4
#include <tvm/tir/builtin.h>
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

#include "../target/utils.h"

namespace tvm {
namespace tl {

using namespace tir;

/*!
 * \brief Check whether two regions have intersections.
 * \param region1 The first region.
 * \param region2 The second region.
 * \return Whether region1 and region2 have intersections.
 */
bool MayConflict(Region region1, Region region2) {
  ICHECK(region1.size() == region2.size());
  for (size_t i = 0; i < region1.size(); i++) {
    Range dim1 = region1[i];
    Range dim2 = region2[i];
    auto int_set1 = arith::IntSet::FromRange(dim1);
    auto int_set2 = arith::IntSet::FromRange(dim2);
    if (arith::Intersect({int_set1, int_set2}).IsNothing()) {
      return false;
    }
  }
  return true;
}

35
36
37
38
39
40
/*!
 * \brief Detect if a statement follows the global memory copy pattern:
 *        1. Contains exactly one buffer store operation
 *        2. Source buffer must be in global memory scope
 *        3. Destination buffer must be in local or shared memory scope
 */
41
class BufferRegionCollector : public StmtExprVisitor {
42
public:
43
44
45
46
47
48
49
50
51
  BufferRegionCollector(Map<Var, Buffer> buffer_data_to_buffer)
      : buffer_data_to_buffer_(buffer_data_to_buffer) {}

  Array<BufferRegion> GetReads() const { return reads_; }

  Array<BufferRegion> GetWrites() const { return writes_; }

  bool GetGlobalCopyPattern() const { return is_global_copy_pattern_; }

52
53
54
private:
  void VisitStmt_(const BufferStoreNode *op) final {
    Buffer store_buffer = op->buffer;
55
56
57
58
59
60
61
62
63
    Array<PrimExpr> indices = op->indices;
    // convert indices to region
    Array<Range> region;
    for (const auto &index : indices) {
      region.push_back(Range::FromMinExtent(index, 1));
    }
    auto store_region = BufferRegion(store_buffer, region);
    writes_.push_back(store_region);

64
65
66
    is_global_read_ = false;
    this->VisitExpr(op->value);
    if (is_global_read_ && (store_buffer.scope() == "shared" ||
67
                            store_buffer.scope() == "shared.dyn")) {
68
69
70
71
72
73
      is_global_copy_pattern_ = true;
    }
    is_global_read_ = false;
  }

  void VisitExpr_(const BufferLoadNode *op) final {
74
75
76
77
78
79
80
81
82
83
    auto load_buffer = op->buffer;
    Array<PrimExpr> indices = op->indices;
    // convert indices to region
    Array<Range> region;
    for (const auto &index : indices) {
      region.push_back(Range::FromMinExtent(index, 1));
    }
    auto load_region = BufferRegion(load_buffer, region);
    reads_.push_back(load_region);

84
85
86
87
88
89
90
    if (op->buffer.scope() == "global") {
      is_global_read_ = true;
    }
  }

  void VisitExpr_(const CallNode *op) final {
    auto args = op->args;
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    if (op->op.same_as(builtin::address_of())) {
      const BufferLoad load = Downcast<BufferLoad>(op->args[0]);
      const BufferRegion buffer_region = BufferRegion::FullRegion(load->buffer);
      // because we only care about the buffer itself instead of indices
      reads_.push_back(buffer_region);
    } else if (op->op.same_as(builtin::tvm_access_ptr())) {
      const VarNode *buffer_var = op->args[1].as<VarNode>();
      ICHECK(buffer_var);
      auto it = buffer_data_to_buffer_.find(GetRef<Var>(buffer_var));
      if (it != buffer_data_to_buffer_.end()) {
        const Buffer &buffer = (*it).second;
        const BufferRegion buffer_region = BufferRegion::FullRegion(buffer);
        // because we only care about the buffer itself instead of indices
        reads_.push_back(buffer_region);
      }
    } else {
      StmtExprVisitor::VisitExpr_(op);
108
109
110
111
    }
  }

private:
112
113
114
  Map<Var, Buffer> buffer_data_to_buffer_;
  Array<BufferRegion> reads_;
  Array<BufferRegion> writes_;
115
116
117
118
119
  bool is_global_read_ = false;
  bool under_buffer_store_ = false;
  bool is_global_copy_pattern_ = false;
};

120
class PipelinePlanner : public StmtExprMutator {
121
public:
122
123
  static Stmt Substitute(const PrimFunc &f, bool use_async_copy = true) {
    PipelinePlanner substituter(use_async_copy);
124
    for (const auto &[_, buffer] : f->buffer_map) {
125
126
127
      substituter.buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    auto target = f->GetAttr<Target>(tvm::attr::kTarget);
128
129
    ICHECK(target.defined())
        << "Pipeline_Planning: Require the target attribute";
130
131
132
133
    substituter.target_ = target.value();
    return substituter.VisitStmt(f->body);
  }

134
private:
135
  PipelinePlanner() = default;
136
  PipelinePlanner(bool use_async_copy) : use_async_copy_(use_async_copy) {}
137

138
139
140
141
  /*! \brief Information about a pipeline stage
   *
   * \param reads Array of buffer regions read by this stage
   * \param writes Array of buffer regions written by this stage
142
   * \param original_stmt_index Original position of this stage in the pipeline
143
144
145
146
   * before reordering \param order Current position of this stage in the
   * pipeline after reordering (-1 if not yet assigned) \param stage Pipeline
   * stage number this operation belongs to (-1 if not yet assigned) \param
   * copy_stage Whether this stage is a memory copy operation \param
147
148
149
150
151
152
153
154
155
156
   * last_use_stmt_index Index of the last statement (in original order) that
   * uses the results of this stage (-1 if not yet determined). This field is
   * crucial for pipeline optimization:
   * - For copy stages: indicates the index of the last statement that reads
   * from the copied data, helping determine optimal placement of copy
   * operations
   * - Used to ensure copy operations are scheduled before their consumers
   * - A value of -1 means no subsequent statement uses this stage's output
   * - This information enables better pipeline scheduling by minimizing data
   *   dependencies and maximizing parallelism
157
   */
158
159
  struct PipelineStageInfo {
    Array<BufferRegion> reads, writes;
160
    int original_stmt_index;
161
162
    int order = -1, stage = -1;
    bool copy_stage = false;
163
164
165
166
167
168
169
170
171
172
173
    bool producer_for_copy = false;
    int last_use_stmt_index =
        -1; // Initialized to -1, indicating no consumers found yet

  public:
    bool is_first_stage() const { return copy_stage || producer_for_copy; }
    bool is_copy_stage() const { return copy_stage; }
    bool is_producer_for_copy() const { return producer_for_copy; }
    bool is_last_use_stmt_index_valid() const {
      return last_use_stmt_index != -1;
    }
174
175
176
  };

  PipelineStageInfo MakePipelineStageInfo(Stmt stmt, int idx) {
177
178
179
180
    Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
                /*body*/ stmt);
    Array<Array<BufferRegion>> access =
        GetBlockReadWriteRegion(block, buffer_data_to_buffer_);
181
182
    auto collector = BufferRegionCollector(buffer_data_to_buffer_);
    collector(block);
183
    PipelineStageInfo pinfo;
184
185
    pinfo.reads = std::move(collector.GetReads());
    pinfo.writes = std::move(collector.GetWrites());
186
    pinfo.original_stmt_index = idx;
187
    pinfo.copy_stage = collector.GetGlobalCopyPattern();
188
189
190
    return std::move(pinfo);
  }

191
  Stmt VisitStmt_(const ForNode *loop) final {
192
193
    auto order_anno = loop->annotations.Get("tl_pipeline_order");
    auto stage_anno = loop->annotations.Get("tl_pipeline_stage");
194
    auto num_stages_anno = loop->annotations.Get("num_stages");
195
    if (order_anno && stage_anno) {
196
197
198
      // Check if order_anno or stage_anno contains -1, which means TMA+WS is
      // enabled
      bool ws_tma_enabled = false;
199
200
      auto order_array = Downcast<Array<Integer>>(order_anno.value());
      auto stage_array = Downcast<Array<Integer>>(stage_anno.value());
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
      for (const auto &val : order_array) {
        if (val->value == -1) {
          ws_tma_enabled = true;
          break;
        }
      }
      if (!ws_tma_enabled) {
        for (const auto &val : stage_array) {
          if (val->value == -1) {
            ws_tma_enabled = true;
            break;
          }
        }
      }

      if (ws_tma_enabled) {
        return StmtExprMutator::VisitStmt_(loop);
      }

220
      Map<String, Any> annotations;
221
222
223
224
225
      for (const auto &[key, value] : loop->annotations) {
        if (key != "tl_pipeline_order") {
          annotations.Set(key, value);
        }
      }
226
      annotations.Set(tir::attr::software_pipeline_order, order_anno.value());
227
228
229
230
231
232

      for (const auto &[key, value] : loop->annotations) {
        if (key != "tl_pipeline_stage") {
          annotations.Set(key, value);
        }
      }
233
      annotations.Set(tir::attr::software_pipeline_stage, stage_anno.value());
234
      if (TargetHasAsyncCopy(target_) && use_async_copy_)
235
236
237
238
239
240
241
        annotations.Set(tir::attr::software_pipeline_async_stages,
                        Array<Integer>{0});
      auto for_node = GetRef<For>(loop);
      for_node.CopyOnWrite()->annotations = annotations;
      return for_node;
    }

242
    if (!num_stages_anno)
243
      return StmtExprMutator::VisitStmt_(loop);
244
    int num_stages = num_stages_anno->as<IntImmNode>()->value;
245
    Stmt pipeline_body{nullptr};
246
247
248
    if (const auto *realize = loop->body.as<BlockRealizeNode>()) {
      const auto &block = realize->block;
      for (const auto &buffer : block->alloc_buffers) {
249
250
251
        ICHECK(buffer->IsInstance<BufferNode>());
        buffer_data_to_buffer_.Set(buffer->data, buffer);
      }
252
253
254
255
256
257
258
259
260
261
262
263
      if (const auto *seq_stmt = block->body.as<SeqStmtNode>()) {
        pipeline_body = block->body;
      } else if (const auto *if_then_else = block->body.as<IfThenElseNode>()) {
        // should assert else case is nullptr
        ICHECK(!if_then_else->else_case.defined())
            << "Pipeline_Planning: Can't handle the body of the loop because "
               "it is not a SeqStmt";
        pipeline_body = if_then_else->then_case;
      } else {
        LOG(FATAL) << "Pipeline_Planning: Can't handle the body of the loop "
                      "because it is not a SeqStmt or IfThenElse";
      }
264
265
266
    } else {
      pipeline_body = loop->body;
    }
267
    const SeqStmtNode *pipeline_body_seq = pipeline_body.as<SeqStmtNode>();
268
269
270
271
    CHECK(pipeline_body_seq)
        << "ValueError: The body of the software pipeline "
           "should be SeqStmt, got "
        << pipeline_body->GetTypeKey() << " " << pipeline_body;
272
273
274
275
276
277
278
279
280
    CHECK(num_stages >= 1);
    CHECK(loop->kind == ForKind::kSerial);

    std::vector<PipelineStageInfo> pipeline_stage_infos;
    for (size_t i = 0; i < pipeline_body_seq->size(); i++) {
      auto pinfo = MakePipelineStageInfo(pipeline_body_seq->seq[i], i);
      pipeline_stage_infos.push_back(std::move(pinfo));
    }

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
    // For every copy stage, mark all its dependency stages as producer_for_copy
    // Helper struct to manage copy stage dependency reads
    struct CopyStageDependencyReadsManager {
      std::vector<BufferRegion> regions;

      // Add a region if not already present (by structural equality)
      void AddUnique(const BufferRegion &region) {
        for (const BufferRegion &copy_read : regions) {
          if (region->buffer.same_as(copy_read->buffer)) {
            return;
          }
        }
        regions.push_back(region);
      }

      // Check if a region is present (by structural equality)
      bool Contains(const BufferRegion &region) const {
        for (const BufferRegion &copy_read : regions) {
          if (region->buffer.same_as(copy_read->buffer)) {
            return true;
          }
        }
        return false;
      }

      size_t Size() const { return regions.size(); }
    };

    CopyStageDependencyReadsManager copy_stage_dependency_reads_mgr;

    // Step 1. Collect Copy reads
    for (const auto &pinfo : pipeline_stage_infos) {
      if (pinfo.is_copy_stage()) {
        for (const BufferRegion &read : pinfo.reads) {
          copy_stage_dependency_reads_mgr.AddUnique(read);
        }
      }
    }

    // Step 2. find if pinfo write the copy reads, then update the
    // copy_stage_dependency_reads To prevent infinite loops, we set a maximum
    // number of iterations. In theory, the number of possible updates is
    // bounded by the number of pipeline stages, since each stage can only be
    // marked as producer_for_copy once, and each read can only be added once.
    // But for safety, we add a hard limit.
    const size_t max_iterations = (pipeline_stage_infos.size() * 4) + 16;
    size_t iter_count = 0;

329
    for (auto &pinfo : pipeline_stage_infos) {
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
      if (!pinfo.is_copy_stage()) {
        continue;
      }
      auto original_copy_stmt_index = pinfo.original_stmt_index;
      bool updated = true;
      while (updated) {
        updated = false;
        for (auto &pinfo_inner : pipeline_stage_infos) {
          if (pinfo_inner.is_copy_stage()) {
            continue;
          }
          if (pinfo_inner.original_stmt_index >= original_copy_stmt_index) {
            break;
          }

          bool should_prepare = false;
          for (const BufferRegion &write : pinfo_inner.writes) {
            if (copy_stage_dependency_reads_mgr.Contains(write)) {
              should_prepare = true;
              break;
            }
          }
          if (should_prepare && !pinfo_inner.is_producer_for_copy()) {
            pinfo_inner.producer_for_copy = true;
            updated = true;
          }
          if (should_prepare) {
            for (const BufferRegion &read : pinfo_inner.reads) {
              size_t before = copy_stage_dependency_reads_mgr.Size();
              copy_stage_dependency_reads_mgr.AddUnique(read);
              if (copy_stage_dependency_reads_mgr.Size() > before) {
                updated = true;
362
              }
363
            }
364
365
          }
        }
366
367
368
369
370
371
372
        iter_count++;
        if (iter_count > max_iterations) {
          LOG(FATAL)
              << "Pipeline planning: Exceeded maximum iterations ("
              << max_iterations << ") in copy stage dependency propagation. "
              << "This may indicate a cyclic or pathological dependency graph.";
        }
373
374
375
      }
    }

376
377
378
379
380
    // Analysis use-def chain to determine last_use_stmt_index for copy
    // operations This step is critical for pipeline optimization as it
    // identifies the index of the last statement that consumes data produced by
    // copy stages, enabling optimal placement of copy operations in the
    // pipeline schedule.
381
    for (auto &pinfo : pipeline_stage_infos) {
382
383
384
385
386
387
      // Only analyze copy stages (memory copy operations)
      if (!pinfo.is_first_stage())
        continue;

      // Check all subsequent statements to find the latest consumer
      for (int i = pinfo.original_stmt_index + 1;
388
           i < static_cast<int>(pipeline_body_seq->size()); i++) {
389
390
391

        // Check if any read operation in statement 'i' uses data written by
        // this copy stage
392
        for (const BufferRegion &read : pipeline_stage_infos[i].reads) {
393
394
          // Look for overlapping buffer regions between this stage's writes and
          // stage 'i's reads
395
396
397
398
399
          if (std::find_if(pinfo.writes.begin(), pinfo.writes.end(),
                           [&](const BufferRegion &r) {
                             return r->buffer == read->buffer &&
                                    MayConflict(r->region, read->region);
                           }) != pinfo.writes.end()) {
400
401
402
403
            // Update last_use_stmt_index to the maximum (latest) statement
            // index that uses this data This ensures we capture the final
            // consumer of the copied data
            pinfo.last_use_stmt_index = std::max(pinfo.last_use_stmt_index, i);
404
405
          }
        }
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
        // Check for write-after-write conflicts (multiple stages writing to
        // same buffer region) This is important for pipeline correctness and
        // affects last_use_stmt_index analysis
        if (pinfo.is_copy_stage()) {
          for (const BufferRegion &write : pipeline_stage_infos[i].writes) {
            if (std::find_if(pinfo.writes.begin(), pinfo.writes.end(),
                             [&](const BufferRegion &r) {
                               return r->buffer == write->buffer &&
                                      MayConflict(r->region, write->region);
                             }) != pinfo.writes.end()) {
              LOG(FATAL) << "Pipeline planning error: Multiple writes to "
                            "overlapping buffer regions detected. "
                         << "Stage " << pinfo.original_stmt_index
                         << " and stage " << i
                         << " are both writing to buffer '"
                         << write->buffer->name
                         << "' with overlapping regions. This is not supported "
                            "in pipeline planning.";
            }
425
426
427
428
429
430
431
          }
        }
      }
    }

    // Making stages and orders
    int order_idx = 0;
432
    // Stage 1. Create pipeline stages and assign order
433
    for (auto &pinfo : pipeline_stage_infos) {
434
      // Skip elements that must be in first stage:
435
436
437
438
439
      // 1. Copy stages (with active last_use_stmt_index) - these need special
      // handling
      //    because they have consumers that depend on their data
      // 2. All Producer stages for copy stages.
      if (pinfo.is_first_stage() && pinfo.is_last_use_stmt_index_valid()) {
440
        continue;
441
      }
442

443
444
445
      // Main logic stage assignment:
      // - Increment order index
      // - Assign to new stage (current num_stages)
446
447
      pinfo.order = order_idx++;
      pinfo.stage = num_stages;
448

449
450
451
      // Schedule copy stages that have this stage as their last consumer
      // This ensures copy operations are placed right before their final
      // consumer for optimal pipeline efficiency
452
      for (auto &pinfo_1 : pipeline_stage_infos) {
453
454
        if ((pinfo_1.is_first_stage() &&
             pinfo_1.last_use_stmt_index == pinfo.original_stmt_index)) {
455
          pinfo_1.order = order_idx++;
456
          pinfo_1.stage = 0; // Copy stages are typically assigned to stage 0
457
        }
458
459
460
      }
    }

461
462
463
464
465
    ICHECK(size_t(order_idx) == pipeline_stage_infos.size())
        << "The number of stages should be equal to the number of pipeline "
           "stages. "
        << "Got " << order_idx << " stages and " << pipeline_stage_infos.size()
        << " pipeline stages.";
466

467
468
    // Step 2. if all the copy is at the end of the order, we can move these
    // copy to the beginning of the order and shrink the stage offset by 1.
469
470
471
472
    int copy_stage_at_end = [&]() {
      int copy_stage_cnt = 0;
      int copy_order_min = pipeline_stage_infos.size();
      int non_copy_order_max = 0;
473
      for (auto &pinfo : pipeline_stage_infos) {
474
        if (pinfo.is_first_stage()) {
475
476
477
478
479
480
          copy_stage_cnt++;
          copy_order_min = std::min(copy_order_min, pinfo.order);
        } else {
          non_copy_order_max = std::max(non_copy_order_max, pinfo.order);
        }
      }
481
482
      if (copy_order_min > non_copy_order_max)
        return copy_stage_cnt;
483
484
485
      return -1;
    }();
    if (copy_stage_at_end > 0 && num_stages >= 2) {
486
487
488
      for (auto &pinfo : pipeline_stage_infos) { // move copy to the beginning
        pinfo.order =
            (pinfo.order + copy_stage_at_end) % pipeline_stage_infos.size();
489
        if (!pinfo.is_copy_stage() && !pinfo.is_producer_for_copy())
490
          pinfo.stage--;
491
492
493
494
      }
    }

    // Finally, make the pipeline annotation
495
    Map<String, Any> annotations;
496
    for (const auto &[key, value] : loop->annotations) {
497
498
499
500
501
502
503
504
      if (key != "num_stages") {
        annotations.Set(key, value);
      }
    }

    std::vector<Integer> orders, stages;
    orders.reserve(pipeline_stage_infos.size());
    stages.reserve(pipeline_stage_infos.size());
505
    for (auto &pinfo : pipeline_stage_infos) {
506
507
508
509
510
511
      orders.push_back(pinfo.order);
      stages.push_back(pinfo.stage);
    }

    annotations.Set(tir::attr::software_pipeline_stage, Array<Integer>(stages));
    annotations.Set(tir::attr::software_pipeline_order, Array<Integer>(orders));
512
    if (TargetHasAsyncCopy(target_) && use_async_copy_)
513
514
      annotations.Set(tir::attr::software_pipeline_async_stages,
                      Array<Integer>{0});
515
516
517
518
519

    return For(loop->loop_var, loop->min, loop->extent, loop->kind, loop->body,
               loop->thread_binding, annotations);
  }

520
521
  Stmt VisitStmt_(const BlockNode *op) final {
    for (const auto &buffer : op->alloc_buffers) {
522
523
524
      buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    Block block = Downcast<Block>(StmtExprMutator::VisitStmt_(op));
525
    for (const auto &buffer : op->alloc_buffers) {
526
527
528
529
530
531
532
      buffer_data_to_buffer_.erase(buffer->data);
    }
    return std::move(block);
  }

  Map<Var, Buffer> buffer_data_to_buffer_;
  Target target_;
533
  bool use_async_copy_;
534
535
536
537
538
};

tvm::transform::Pass PipelinePlanning() {
  using namespace tir::transform;
  auto pass_func = [=](PrimFunc f, IRModule m, PassContext ctx) {
539
540
    bool use_async_copy =
        ctx->GetConfig<Bool>("tir.use_async_copy", Bool(true)).value();
541
    PrimFuncNode *fptr = f.CopyOnWrite();
542
    fptr->body = PipelinePlanner::Substitute(f, use_async_copy);
543
544
545
546
547
    return f;
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.PipelinePlanning", {});
}

548
549
550
551
TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.PipelinePlanning", PipelinePlanning);
});
552

553
554
} // namespace tl
} // namespace tvm