example_mamba_chunk_state.py 7.78 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
import argparse
import torch
import torch.nn.functional as F
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
from einops import rearrange, repeat
import itertools


def chunk_state_triton(B, x, dt, dA_cumsum):
    from mamba_ssm.ops.triton.ssd_chunk_state import _chunk_state_fwd
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
    return _chunk_state_fwd(B, x, dt, dA_cumsum, states_in_fp32=False)


def ref_program(B, x, dt, dA_cumsum):
    """
    Argument:
        B: (batch, seqlen, ngroups, headdim)
        x: (batch, seqlen, nheads, headdim)
        dt: (batch, nheads, nchunks, chunk_size)
        dA_cumsum: (batch, nheads, nchunks, chunk_size)
    Return:
        states: (batch, nchunks, nheads, headdim, dstate)
    """
    # Check constraints.
    batch, seqlen, nheads, headdim = x.shape
    dstate = B.shape[-1]
    _, _, nchunks, chunk_size = dt.shape
    assert seqlen <= nchunks * chunk_size
    assert x.shape == (batch, seqlen, nheads, headdim)
    assert dt.shape == (batch, nheads, nchunks, chunk_size)
    ngroups = B.shape[2]
    assert nheads % ngroups == 0
    assert B.shape == (batch, seqlen, ngroups, dstate)
    B = repeat(B, "b l g d -> b l (g h) d", h=nheads // ngroups)
    assert dA_cumsum.shape == (batch, nheads, nchunks, chunk_size)
    if seqlen < nchunks * chunk_size:
        x = F.pad(x, (0, 0, 0, 0, 0, nchunks * chunk_size - seqlen))
        B = F.pad(B, (0, 0, 0, 0, 0, nchunks * chunk_size - seqlen))
    x = rearrange(x, "b (c l) h p -> b c l h p", l=chunk_size)
    B = rearrange(B, "b (c l) ... -> b c l ...", l=chunk_size)
    decay_states = torch.exp((dA_cumsum[:, :, :, -1:] - dA_cumsum))
45
    return torch.einsum("bclhn,bhcl,bhcl,bclhp->bchpn", B.to(x.dtype), decay_states.to(x.dtype), dt.to(x.dtype), x)
46
47
48


def get_configs():
49
    iter_params = dict(block_M=[64, 128], block_N=[32, 64, 128], block_K=[32, 64], num_stages=[1, 2, 3, 4, 5])
50
    return [dict(zip(iter_params, values)) for values in itertools.product(*iter_params.values())]
51
52


53
@autotune(configs=get_configs(), warmup=10, rep=10)
54
@tilelang.jit(out_idx=[4])
55
56
57
def chunk_state_fwd(
    batch, seqlen, chunk_size, ngroups, nheads, headdim, dstate, block_M=64, block_N=64, block_K=64, num_stages=2, threads=128
):
58
59
60
61
62
    dtype = "float16"
    accum_dtype = "float"
    nchunks = T.ceildiv(seqlen, chunk_size)
    p = 1.44269504

63
    @T.prim_func
64
65
66
67
68
69
70
71
    def main(
        B: T.Tensor((batch, seqlen, ngroups, dstate), dtype),
        x: T.Tensor((batch, seqlen, nheads, headdim), dtype),
        dt: T.Tensor((batch, nheads, nchunks, chunk_size), dtype),
        dA_cumsum: T.Tensor((batch, nheads, nchunks, chunk_size), dtype),
        Output: T.Tensor((batch, nchunks, nheads, headdim, dstate), dtype),
    ):
        with T.Kernel(nheads, T.ceildiv(headdim, block_M) * T.ceildiv(dstate, block_N), batch * nchunks, threads=threads) as (bz, bx, by):
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
            x_shared = T.alloc_shared((block_K, block_M), dtype)
            x_local = T.alloc_fragment((block_K, block_M), dtype)
            xt_local = T.alloc_fragment((block_M, block_K), dtype)
            B_shared = T.alloc_shared((block_K, block_N), dtype)
            dt_shared = T.alloc_shared((block_K), dtype)
            dA_cumsum_shared = T.alloc_shared((block_K), dtype)
            acc_o = T.alloc_fragment((block_M, block_N), accum_dtype)
            acc_o_shared = T.alloc_shared((block_M, block_N), dtype)
            scale = T.alloc_fragment((block_K), accum_dtype)
            dA_cs_last = T.alloc_fragment((1), accum_dtype)
            dA_cumsum_local = T.alloc_fragment((block_K), accum_dtype)
            dt_local = T.alloc_fragment((block_K), accum_dtype)

            loop_range = T.ceildiv(chunk_size, block_K)

            batch_idx = by % batch
            chunk_idx = by // batch
            m_idx = bx // T.ceildiv(dstate, block_N)
            n_idx = bx % T.ceildiv(dstate, block_N)

92
93
94
            T.annotate_layout(
                {x_shared: tilelang.layout.make_swizzled_layout(x_shared), acc_o_shared: tilelang.layout.make_swizzled_layout(acc_o_shared)}
            )
95
96
97
98

            dA_cs_last[0] = dA_cumsum[batch_idx, bz, chunk_idx, chunk_size - 1]
            T.clear(acc_o)
            for k in T.Pipelined(loop_range, num_stages=num_stages):
99
                T.copy(
100
101
102
103
104
105
106
107
108
109
                    x[
                        batch_idx,
                        chunk_idx * chunk_size + k * block_K : chunk_idx * chunk_size + (k + 1) * block_K,
                        bz,
                        m_idx * block_M : (m_idx + 1) * block_M,
                    ],
                    x_shared,
                )
                T.copy(dA_cumsum[batch_idx, bz, chunk_idx, k * block_K : (k + 1) * block_K], dA_cumsum_shared)
                T.copy(dt[batch_idx, bz, chunk_idx, k * block_K : (k + 1) * block_K], dt_shared)
110
111
112
113
114
115
116
117
                T.copy(dA_cumsum_shared, dA_cumsum_local)
                T.copy(dt_shared, dt_local)
                for i in T.Parallel(block_K):
                    scale[i] = T.exp2(dA_cs_last[0] * p - dA_cumsum_local[i] * p) * dt_local[i]
                T.copy(x_shared, x_local)
                for i, j in T.Parallel(block_M, block_K):
                    xt_local[i, j] = x_local[j, i] * scale[j]
                T.copy(
118
119
120
121
122
123
124
125
                    B[
                        batch_idx,
                        chunk_idx * chunk_size + k * block_K : chunk_idx * chunk_size + (k + 1) * block_K,
                        bz // (nheads // ngroups),
                        n_idx * block_N : (n_idx + 1) * block_N,
                    ],
                    B_shared,
                )
126
127
128
129
                T.gemm(xt_local, B_shared, acc_o)
            T.copy(acc_o, acc_o_shared)
            T.copy(
                acc_o_shared,
130
131
                Output[batch_idx, chunk_idx, bz, m_idx * block_M : (m_idx + 1) * block_M, n_idx * block_N : (n_idx + 1) * block_N],
            )
132

133
    return main
134
135
136
137


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
138
139
140
141
142
143
144
145
    parser.add_argument("--batch", type=int, default=8, help="batch size")
    parser.add_argument("--heads", type=int, default=80, help="heads")
    parser.add_argument("--groups", type=int, default=1, help="groups")
    parser.add_argument("--seq_len", type=int, default=4096, help="sequence length")
    parser.add_argument("--chunk_size", type=int, default=256, help="chunk size")
    parser.add_argument("--dim", type=int, default=64, help="dim")
    parser.add_argument("--dstate", type=int, default=128, help="dstate")
    parser.add_argument("--tune", action="store_true", help="tune configs")
146
    args = parser.parse_args()
147
148
149
150
151
152
153
154
155
    batch, heads, groups, seq_len, chunk_size, dim, dstate = (
        args.batch,
        args.heads,
        args.groups,
        args.seq_len,
        args.chunk_size,
        args.dim,
        args.dstate,
    )
156
157
    total_flops = 2 * batch * seq_len * heads * dim * dstate

158
    if not args.tune:
159
        kernel = chunk_state_fwd(
160
161
            batch, seq_len, chunk_size, groups, heads, dim, dstate, block_M=64, block_N=128, block_K=64, num_stages=4, threads=128
        )
162
163
        profiler = kernel.get_profiler(tilelang.TensorSupplyType.Normal)
        profiler.assert_allclose(ref_program, rtol=0.01, atol=0.01)
164
        print("All checks pass.")
165
        latency = profiler.do_bench(ref_program, warmup=500)
166
167
        print("Ref: {:.2f} ms".format(latency))
        print("Ref: {:.2f} TFlops".format(total_flops / latency * 1e-9))
168
        latency = profiler.do_bench(warmup=500)
169
170
171
        print("Tile-lang: {:.2f} ms".format(latency))
        print("Tile-lang: {:.2f} TFlops".format(total_flops / latency * 1e-9))
    else:
172
        best_result = chunk_state_fwd(batch, seq_len, chunk_size, groups, heads, dim, dstate)
173
174
175
        best_latency = best_result.latency
        best_config = best_result.config
        ref_latency = best_result.ref_latency
176
177
178
        print(f"Best latency: {best_latency}")
        print(f"Best TFlops: {total_flops / best_latency * 1e-9}")
        print(f"Best config: {best_config}")