example_mamba_chunk_scan.py 11.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
import argparse
import torch
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
from einops import rearrange, repeat
import itertools


def chunk_scan_triton(cb, x, dt, dA_cumsum, C, states, D):
    from mamba_ssm.ops.triton.ssd_chunk_scan import _chunk_scan_fwd
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    out, _ = _chunk_scan_fwd(cb, x, dt, dA_cumsum, C, states, D)
    return out


def ref_program(cb, x, dt, dA_cumsum, C, prev_states, D):
    """
    Argument:
        cb: (batch, nchunks, ngroups, chunk_size, chunk_size)
        x: (batch, seqlen, nheads, headdim)
        dt: (batch, nheads, nchunks, chunk_size)
        dA_cumsum: (batch, nheads, nchunks, chunk_size)
        C: (batch, seqlen, ngroups, dstate)
        prev_states: (batch, nchunks, nheads, headdim, dstate)
        D: (nheads, headdim) or (nheads,)
        z: (batch, seqlen, nheads, headdim)
    Return:
        out: (batch, seqlen, nheads, headdim)
    """
    _, _, ngroups, _, _ = cb.shape
    batch, seqlen, nheads, headdim = x.shape
    # _, _, ngroups, dstate = B.shape
    # assert B.shape == (batch, seqlen, ngroups, dstate)
    _, _, nchunks, chunk_size = dt.shape
    assert seqlen == nchunks * chunk_size
    # assert C.shape == B.shape
    # B = repeat(B, "b l g d -> b l (g h) d", h=nheads // ngroups)
    C = repeat(C, "b l g d -> b l (g h) d", h=nheads // ngroups)
    cb = repeat(cb, "b c g l s -> b c (g h) l s", h=nheads // ngroups)
    # CB = torch.einsum("bclhn,bcshn->bchls", rearrange(C, "b (c l) h n -> b c l h n", c=nchunks),
    #                   rearrange(B, "b (c s) h n -> b c s h n", c=nchunks))
    # (batch, nheads, nchunks, chunksize, chunksize)
    dt_segment_sum = dA_cumsum[:, :, :, :, None] - dA_cumsum[:, :, :, None, :]
    decay = torch.exp(dt_segment_sum)
    scores_decay = cb * rearrange(decay, "b h c l s -> b c h l s")
47
    causal_mask = torch.tril(torch.ones(chunk_size, chunk_size, device=x.device, dtype=bool), diagonal=0)
48
    scores_decay = scores_decay.masked_fill(~causal_mask, 0)
49
50
51
    out = torch.einsum(
        "bchls,bhcs,bcshp->bclhp", scores_decay.to(x.dtype), dt.to(x.dtype), rearrange(x, "b (c s) h p -> b c s h p", c=nchunks)
    )
52
    state_decay_out = torch.exp(rearrange(dA_cumsum, "b h c l -> b c l h 1"))
53
54
55
    out_prev = (
        torch.einsum("bclhn,bchpn->bclhp", rearrange(C, "b (c l) h n -> b c l h n", c=nchunks), prev_states.to(C.dtype)) * state_decay_out
    )
56
57
58
59
60
61
62
63
64
65
    out = out + out_prev
    out = rearrange(out, "b c l h p -> b (c l) h p")
    if D is not None:
        if D.dim() == 1:
            D = rearrange(D, "h -> h 1")
        out = out + x * D
    return out


def get_configs():
66
    iter_params = dict(block_M=[64, 128, 256], block_N=[32, 64], block_K=[64, 128, 256], block_Dstate=[128], num_stages=[1, 2, 3, 4, 5])
67
    return [dict(zip(iter_params, values)) for values in itertools.product(*iter_params.values())]
68
69


70
@autotune(configs=get_configs(), warmup=10, rep=10)
71
72
73
74
75
76
@tilelang.jit(
    out_idx=[7],
    pass_configs={
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
    },
)
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
def chunk_scan_fwd(
    batch,
    seqlen,
    chunk_size,
    ngroups,
    nheads,
    headdim,
    dstate,
    block_M=64,
    block_N=64,
    block_K=64,
    block_Dstate=128,
    num_stages=2,
    threads=128,
):
92
93
94
95
96
    dtype = "float16"
    accum_dtype = "float"
    nchunks = T.ceildiv(seqlen, chunk_size)
    p = 1.44269504

97
    @T.prim_func
98
    def main(
99
100
101
102
103
104
105
106
        cb: T.Tensor((batch, nchunks, ngroups, chunk_size, chunk_size), dtype),  # type: ignore
        x: T.Tensor((batch, seqlen, nheads, headdim), dtype),  # type: ignore
        dt: T.Tensor((batch, nheads, nchunks, chunk_size), dtype),  # type: ignore
        dA_cumsum: T.Tensor((batch, nheads, nchunks, chunk_size), dtype),  # type: ignore
        C: T.Tensor((batch, seqlen, ngroups, dstate), dtype),  # type: ignore
        prev_states: T.Tensor((batch, nchunks, nheads, headdim, dstate), dtype),  # type: ignore
        D: T.Tensor((nheads), dtype),  # type: ignore
        Output: T.Tensor((batch, seqlen, nheads, headdim), dtype),  # type: ignore
107
    ):
108
109
110
111
112
        with T.Kernel(nheads, T.ceildiv(chunk_size, block_M) * T.ceildiv(headdim, block_N), batch * nchunks, threads=threads) as (
            bz,
            bx,
            by,
        ):
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
            acc_o = T.alloc_fragment((block_M, block_N), accum_dtype)
            acc_o_shared = T.alloc_shared((block_M, block_N), dtype)
            cb_shared = T.alloc_shared((block_M, block_K), dtype, scope="shared.dyn")
            cb_local = T.alloc_fragment((block_M, block_K), dtype)
            dA_cs_k_shared = T.alloc_shared((block_K), dtype, scope="shared")
            dA_cs_k_local = T.alloc_fragment((block_K), accum_dtype)
            dA_cs_m_local = T.alloc_fragment((block_M), accum_dtype)
            dt_shared = T.alloc_shared((block_K), dtype, scope="shared")
            dt_local = T.alloc_fragment((block_K), accum_dtype)
            x_shared = T.alloc_shared((block_K, block_N), dtype, scope="shared.dyn")
            dA_cs_m_shared = T.alloc_shared((block_M), dtype, scope="shared")
            scale_m_local = T.alloc_fragment((block_M), accum_dtype)
            C_shared = T.alloc_shared((block_M, block_Dstate), dtype)
            prev_state_shared = T.alloc_shared((block_N, block_Dstate), dtype)
            D_local = T.alloc_fragment((1), accum_dtype)
            x_residual_shared = T.alloc_shared((block_M, block_N), dtype, scope="shared.dyn")
            x_residual_local = T.alloc_fragment((block_M, block_N), accum_dtype)

            batch_idx = by % batch
            chunk_idx = by // batch
            # m: chunk_size
            # n : headdim
            m_idx = bx // T.ceildiv(headdim, block_N)
            n_idx = bx % T.ceildiv(headdim, block_N)

138
139
140
141
142
143
144
            T.annotate_layout(
                {
                    acc_o_shared: tilelang.layout.make_swizzled_layout(acc_o_shared),
                    cb_shared: tilelang.layout.make_swizzled_layout(cb_shared),
                    x_residual_shared: tilelang.layout.make_swizzled_layout(x_residual_shared),
                }
            )
145

146
147
            T.no_set_max_nreg()

148
            T.copy(dA_cumsum[batch_idx, bz, chunk_idx, m_idx * block_M : (m_idx + 1) * block_M], dA_cs_m_shared)
149
150
151
152
153
154
            T.copy(dA_cs_m_shared, dA_cs_m_local)
            T.clear(acc_o)

            for i in T.Parallel(block_M):
                scale_m_local[i] = T.exp2(dA_cs_m_local[i] * p)
            T.copy(
155
156
157
158
159
160
161
162
163
                C[
                    batch_idx,
                    chunk_idx * chunk_size + m_idx * block_M : chunk_idx * chunk_size + (m_idx + 1) * block_M,
                    bz // (nheads // ngroups),
                    0:block_Dstate,
                ],
                C_shared,
            )
            T.copy(prev_states[batch_idx, chunk_idx, bz, n_idx * block_N : (n_idx + 1) * block_N, 0:block_Dstate], prev_state_shared)
164
165
166
167
168
169
170
            T.gemm(C_shared, prev_state_shared, acc_o, transpose_B=True)
            for i, j in T.Parallel(block_M, block_N):
                acc_o[i, j] *= scale_m_local[i]

            loop_range = T.ceildiv((m_idx + 1) * block_M, block_K)

            for k in T.Pipelined(loop_range, num_stages=num_stages):
171
                T.copy(
172
173
174
175
176
177
178
179
180
                    cb[
                        batch_idx,
                        chunk_idx,
                        bz // (nheads // ngroups),
                        m_idx * block_M : (m_idx + 1) * block_M,
                        k * block_K : (k + 1) * block_K,
                    ],
                    cb_shared,
                )
181
                T.copy(cb_shared, cb_local)
182
                T.copy(dA_cumsum[batch_idx, bz, chunk_idx, k * block_K : (k + 1) * block_K], dA_cs_k_shared)
183
184
                T.copy(dA_cs_k_shared, dA_cs_k_local)
                for i, j in T.Parallel(block_M, block_K):
185
186
                    cb_local[i, j] = cb_local[i, j] * T.exp2(dA_cs_m_local[i] * p - dA_cs_k_local[j] * p)
                T.copy(dt[batch_idx, bz, chunk_idx, k * block_K : (k + 1) * block_K], dt_shared)
187
188
189
190
                T.copy(dt_shared, dt_local)
                for i, j in T.Parallel(block_M, block_K):
                    cb_local[i, j] *= dt_local[j]
                for i, j in T.Parallel(block_M, block_K):
191
                    cb_local[i, j] = T.if_then_else(m_idx * block_M + i >= k * block_K + j, cb_local[i, j], 0)
192
                T.copy(
193
194
195
196
197
198
199
200
                    x[
                        batch_idx,
                        chunk_idx * chunk_size + k * block_K : chunk_idx * chunk_size + (k + 1) * block_K,
                        bz,
                        n_idx * block_N : (n_idx + 1) * block_N,
                    ],
                    x_shared,
                )
201
202
203
204
                T.gemm(cb_local, x_shared, acc_o)

            D_local[0] = D[bz]
            T.copy(
205
206
207
208
209
210
211
212
                x[
                    batch_idx,
                    chunk_idx * chunk_size + m_idx * block_M : chunk_idx * chunk_size + (m_idx + 1) * block_M,
                    bz,
                    n_idx * block_N : (n_idx + 1) * block_N,
                ],
                x_residual_shared,
            )
213
214
215
            T.copy(x_residual_shared, x_residual_local)
            for i, j in T.Parallel(block_M, block_N):
                acc_o[i, j] += x_residual_local[i, j] * D_local[0]
216

217
218
219
            T.copy(acc_o, acc_o_shared)
            T.copy(
                acc_o_shared,
220
221
222
223
224
225
226
                Output[
                    batch_idx,
                    chunk_idx * chunk_size + m_idx * block_M : chunk_idx * chunk_size + (m_idx + 1) * block_M,
                    bz,
                    n_idx * block_N : (n_idx + 1) * block_N,
                ],
            )
227

228
    return main
229
230
231
232


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
233
234
235
236
237
238
239
240
    parser.add_argument("--batch", type=int, default=8, help="batch size")
    parser.add_argument("--heads", type=int, default=80, help="heads")
    parser.add_argument("--groups", type=int, default=1, help="groups")
    parser.add_argument("--seq_len", type=int, default=4096, help="sequence length")
    parser.add_argument("--chunk_size", type=int, default=256, help="chunk size")
    parser.add_argument("--dim", type=int, default=64, help="dim")
    parser.add_argument("--dstate", type=int, default=128, help="dstate")
    parser.add_argument("--tune", action="store_true", help="tune configs")
241
    args = parser.parse_args()
242
243
244
245
246
247
248
249
250
    batch, heads, groups, seq_len, chunk_size, dim, dstate = (
        args.batch,
        args.heads,
        args.groups,
        args.seq_len,
        args.chunk_size,
        args.dim,
        args.dstate,
    )
251
252
    total_flops = 2 * batch * seq_len * chunk_size * heads * dim * 0.5 + 2 * batch * seq_len * heads * dim * dstate

253
    if not args.tune:
254
        kernel = chunk_scan_fwd(
255
256
257
258
259
260
261
262
263
264
265
266
            batch,
            seq_len,
            chunk_size,
            groups,
            heads,
            dim,
            dstate,
            block_M=64,
            block_N=64,
            block_K=64,
            block_Dstate=128,
            num_stages=2,
267
268
            threads=128,
        )
269
270
        profiler = kernel.get_profiler(tilelang.TensorSupplyType.Normal)
        profiler.assert_allclose(ref_program, rtol=0.01, atol=0.01)
271
        print("All checks pass.")
272
        latency = profiler.do_bench(ref_program, warmup=500)
273
274
        print("Ref: {:.2f} ms".format(latency))
        print("Ref: {:.2f} TFlops".format(total_flops / latency * 1e-9))
275
        latency = profiler.do_bench(warmup=500)
276
277
278
        print("Tile-lang: {:.2f} ms".format(latency))
        print("Tile-lang: {:.2f} TFlops".format(total_flops / latency * 1e-9))
    else:
279
280
281
282
        kernel = chunk_scan_fwd(batch, seq_len, chunk_size, groups, heads, dim, dstate)
        best_latency = kernel.latency
        best_config = kernel.config
        ref_latency = kernel.ref_latency
283
284
285
        print(f"Best latency: {best_latency}")
        print(f"Best TFlops: {total_flops / best_latency * 1e-9}")
        print(f"Best config: {best_config}")