gemm_tcgen5mma.py 2.59 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import torch
import tilelang
import tilelang.language as T


def matmul(
    M,
    N,
    K,
    block_M,
    block_N,
    block_K,
    trans_A,
    trans_B,
    in_dtype,
    out_dtype,
    accum_dtype,
    num_stages,
    threads,
):
    A_shape = (K, M) if trans_A else (M, K)
    B_shape = (N, K) if trans_B else (K, N)
    A_shared_shape = (block_K, block_M) if trans_A else (block_M, block_K)
    B_shared_shape = (block_N, block_K) if trans_B else (block_K, block_N)

    @T.prim_func
    def main(
28
29
30
        A: T.Tensor(A_shape, in_dtype),
        B: T.Tensor(B_shape, in_dtype),
        C: T.Tensor((M, N), out_dtype),
31
32
33
34
35
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):
            A_shared = T.alloc_shared(A_shared_shape, in_dtype)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype)
            C_tmem = T.alloc_tmem([block_M, block_N], accum_dtype)
36
            mbar = T.alloc_barrier(1)
37
38
39
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
            C_shared = T.alloc_shared((block_M, block_N), out_dtype)

40
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
41
42
                T.copy(A[by * block_M, k * block_K], A_shared)
                T.copy(B[bx * block_N, k * block_K], B_shared)
43
                T.gemm(A_shared, B_shared, C_tmem, trans_A, trans_B, mbar=mbar, wg_wait=-1, clear_accum=k == 0)
44
45
                T.mbarrier_wait_parity(mbar, k % 2)

46
47
            T.copy(C_tmem, C_local)
            T.copy(C_local, C_shared)
48
49
50
51
52
53
54
55
56
57

            T.copy(C_shared, C[by * block_M, bx * block_N])

    return main


M, N, K = 4096, 4096, 8192
block_M, block_N, block_K = 128, 256, 128
trans_A, trans_B = False, True
in_dtype, out_dtype, accum_dtype = "bfloat16", "bfloat16", "float"
58
num_stages = 2
59
60
threads = 256

61
func = matmul(M, N, K, block_M, block_N, block_K, trans_A, trans_B, in_dtype, out_dtype, accum_dtype, num_stages, threads)
62
63
64
65
66
67
68
jit_kernel = tilelang.compile(
    func,
    out_idx=[2],
    target="cuda",
    pass_configs={
        tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
        tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
69
70
    },
)
71
72
73
74
75
76
77
78
79
80
81
82

print(jit_kernel.get_kernel_source())

a = torch.randn(M, K, device="cuda", dtype=torch.bfloat16)
b = torch.randn(N, K, device="cuda", dtype=torch.bfloat16)
c = jit_kernel(a, b)
ref_c = (a.to(torch.float) @ b.T.to(torch.float)).to(torch.bfloat16)
torch.testing.assert_close(c, ref_c, rtol=1e-2, atol=1e-2)

profiler = jit_kernel.get_profiler()
latency = profiler.do_bench()
print(f"Latency: {latency} ms")
83
print(f"Flops: {2 * M * N * K / (latency / 1e3) / 1e12} TFLOPS")