example_mha_fwd_varlen.py 11.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
# ruff: noqa
import torch
import tilelang
import tilelang.language as T
import tilelang.testing
import argparse

import torch
from einops import rearrange, repeat
10
from varlen_utils import generate_random_padding_mask, generate_qkv
11
12
13


def attention_ref(
14
15
16
17
18
19
20
21
    q,
    k,
    v,
    query_padding_mask=None,
    key_padding_mask=None,
    causal=False,
    window_size=(-1, -1),  # -1 means infinite window size
    upcast=True,
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
):
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, head_dim)
        k: (batch_size, seqlen_k, nheads_k, head_dim)
        v: (batch_size, seqlen_k, nheads_k, head_dim)
        query_padding_mask: (batch_size, seqlen_q)
        key_padding_mask: (batch_size, seqlen_k)
        attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k)
        dropout_p: float
        dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k)
        causal: whether to apply causal masking
        window_size: (int, int), left and right window size
        upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast
            output back to fp16/bf16.
        reorder_ops: whether to change the order of operations (scaling k instead of scaling q, etc.)
            without changing the math. This is to estimate the numerical error from operation
            reordering.
    Output:
        output: (batch_size, seqlen_q, nheads, head_dim)
        attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout
    """
    if causal:
        window_size = (window_size[0], 0)
    dtype_og = q.dtype
    if upcast:
        q, k, v = q.float(), k.float(), v.float()
49
    dim = q.shape[-1]
50
    scale = (1.0 / dim) ** 0.5  # log2(e)
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
    v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
    scores = torch.einsum("bthd,bshd->bhts", q, k)
    if key_padding_mask is not None:
        scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
        # scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), 0)
    scores = scores * scale
    attention = torch.softmax(scores, dim=-1).to(v.dtype)

    # We want to mask here so that the attention matrix doesn't have any NaNs
    # Otherwise we'll get NaN in dV
    if query_padding_mask is not None:
        attention = attention.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
    output = torch.einsum("bhts,bshd->bthd", attention, v)
    if query_padding_mask is not None:
        output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0)
    return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)


70
@tilelang.jit(
71
72
    out_idx=[6],
    pass_configs={
73
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
74
75
76
77
    },
)
def flashattn(batch_size, UQ, UKV, heads, dim, is_causal, block_M=64, block_N=64, num_stages=0, threads=32):
    scale = (1.0 / dim) ** 0.5 * 1.44269504  # log2(e)
78
79
80
81
82
83
84
85
    q_shape = [UQ, heads, dim]
    k_shape = [UKV, heads, dim]
    v_shape = [UKV, heads, dim]
    o_shape = [UQ, heads, dim]

    dtype = "float16"
    accum_dtype = "float"

86
87
    @T.prim_func
    def main(
88
89
90
91
92
93
94
        Q_unpad: T.Tensor(q_shape, dtype),
        K_unpad: T.Tensor(k_shape, dtype),
        V_unpad: T.Tensor(v_shape, dtype),
        cu_seqlens_q: T.Tensor([batch_size + 1], "int32"),
        cu_seqlens_k: T.Tensor([batch_size + 1], "int32"),
        max_seqlen_q: T.int32,
        Output_unpad: T.Tensor(o_shape, dtype),
95
    ):
96
        with T.Kernel(T.ceildiv(max_seqlen_q, block_M), heads, batch_size, threads=threads) as (bx, by, bz):
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
            Q_shared = T.alloc_shared([block_M, dim], dtype, "shared")
            K_shared = T.alloc_shared([block_N, dim], dtype, "shared")
            V_shared = T.alloc_shared([block_N, dim], dtype, "shared")
            O_shared = T.alloc_shared([block_M, dim], dtype, "shared")
            acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
            acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
            scores_max = T.alloc_fragment([block_M], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
            scores_scale = T.alloc_fragment([block_M], accum_dtype)
            scores_sum = T.alloc_fragment([block_M], accum_dtype)
            logsum = T.alloc_fragment([block_M], accum_dtype)

            batch_idx = bz
            head_idx = by

            q_start_idx = cu_seqlens_q[batch_idx]
            k_start_idx = cu_seqlens_k[batch_idx]
            v_start_idx = cu_seqlens_k[batch_idx]
            q_end_idx = cu_seqlens_q[batch_idx + 1]
            k_end_idx = cu_seqlens_k[batch_idx + 1]
            v_end_idx = cu_seqlens_k[batch_idx + 1]

            q_current_seqlen = q_end_idx - q_start_idx
            k_current_seqlen = k_end_idx - k_start_idx
            v_current_seqlen = v_end_idx - v_start_idx

            for i, d in T.Parallel(block_M, dim):
                if bx * block_M + i < q_current_seqlen:
                    Q_shared[i, d] = Q_unpad[q_start_idx + bx * block_M + i, head_idx, d]
                else:
                    Q_shared[i, d] = 0

            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))

            loop_range = T.ceildiv(k_current_seqlen, block_N)

            for k in T.Pipelined(loop_range, num_stages=num_stages):
                # Q * K
                for i, d in T.Parallel(block_N, dim):
                    if k * block_N + i < k_current_seqlen:
                        K_shared[i, d] = K_unpad[k_start_idx + k * block_N + i, head_idx, d]
141
                    else:
142
143
144
                        K_shared[i, d] = 0
                if is_causal:
                    for i, j in T.Parallel(block_M, block_N):
145
146
147
148
149
150
                        acc_s[i, j] = T.if_then_else(
                            (bx * block_M + i >= k * block_N + j)
                            and (bx * block_M + i >= q_current_seqlen or k * block_N + j >= k_current_seqlen),
                            -T.infinity(acc_s.dtype),
                            0,
                        )
151
152
                else:
                    for i, j in T.Parallel(block_M, block_N):
153
154
155
                        acc_s[i, j] = T.if_then_else(
                            (bx * block_M + i >= q_current_seqlen or k * block_N + j >= k_current_seqlen), -T.infinity(acc_s.dtype), 0
                        )
156
157

                T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
158

159
160
                # Softmax
                T.copy(scores_max, scores_max_prev)
161
                T.fill(scores_max, -T.infinity(accum_dtype))
162
                T.reduce_max(acc_s, scores_max, dim=1, clear=False)
163
164
                for i in T.Parallel(block_M):
                    scores_max[i] = T.max(scores_max[i], scores_max_prev[i])
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
                # To do causal softmax, we need to set the scores_max to 0 if it is -inf
                # This process is called Check_inf in FlashAttention3 code, and it only need to be done
                # in the first ceil_div(kBlockM, kBlockN) steps.
                # for i in T.Parallel(block_M):
                #     scores_max[i] = T.if_then_else(scores_max[i] == -T.infinity(accum_dtype), 0, scores_max[i])
                for i in T.Parallel(block_M):
                    scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
                for i, j in T.Parallel(block_M, block_N):
                    # Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
                    # max * log_2(e)) This allows the compiler to use the ffma
                    # instruction instead of fadd and fmul separately.
                    acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                T.reduce_sum(acc_s, scores_sum, dim=1)
                for i in T.Parallel(block_M):
                    logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
                T.copy(acc_s, acc_s_cast)

                # Rescale
                for i, j in T.Parallel(block_M, dim):
                    acc_o[i, j] *= scores_scale[i]
185

186
187
188
189
                # V * softmax(Q * K)
                for i, d in T.grid(block_N, dim):
                    if k * block_N + i < v_current_seqlen:
                        V_shared[i, d] = V_unpad[v_start_idx + k * block_N + i, head_idx, d]
190
                    else:
191
                        V_shared[i, d] = 0
192

193
                T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
194

195
196
197
            for i, j in T.Parallel(block_M, dim):
                acc_o[i, j] /= logsum[i]
            T.copy(acc_o, O_shared)
198

199
200
201
            for i, d in T.Parallel(block_M, dim):
                if bx * block_M + i < q_current_seqlen:
                    Output_unpad[q_start_idx + bx * block_M + i, head_idx, d] = O_shared[i, d]
202

203
    return main
204
205


206
def main(batch: int = 8, heads: int = 64, seq_len: int = 2048, dim: int = 128):
207
208
209
210
211
212
213
214
215
216
217
218
219
    flops_per_matmul = 2.0 * batch * heads * seq_len * seq_len * dim
    total_flops = 2 * flops_per_matmul

    tilelang.testing.set_random_seed(0)

    causal = False
    if causal:
        total_flops *= 0.5

    dtype = torch.float16
    device = torch.device("cuda")
    window_size = (-1, -1)

220
221
    q = torch.randn(batch, seq_len, heads, dim, dtype=dtype, requires_grad=True).to(device)
    k = torch.randn(batch, seq_len, heads, dim, dtype=dtype, requires_grad=True).to(device)
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    v = torch.randn(batch, seq_len, heads, dim, dtype=dtype, requires_grad=True).to(device)

    query_padding_mask = generate_random_padding_mask(seq_len, batch, device, mode="random")
    key_padding_mask = generate_random_padding_mask(seq_len, batch, device, mode="random")
    (
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        q,
        k,
        v,
        output_pad_fn,
        dq_pad_fn,
        dk_pad_fn,
240
    ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
241
242
243
244
245

    UQ = q_unpad.shape[0]  # unpadded query length
    UK = k_unpad.shape[0]  # unpadded key length
    UKV = k_unpad.shape[0]  # unpadded query key length

246
    kernel = flashattn(batch, UQ, UKV, heads, dim, causal)
247

248
    out_unpad = kernel(q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q)
249
250
251
252
253
254
255
256
257
258
    out = output_pad_fn(out_unpad)

    out_ref, _ = attention_ref(
        q,
        k,
        v,
        query_padding_mask,
        key_padding_mask,
        causal=causal,
    )
259
260
    torch.testing.assert_close(out, out_ref, rtol=1e-2, atol=1e-2)

261
    import flash_attn
262

263
264
265
266
267
268
269
270
271
272
273
274
    fla_out_unpad = flash_attn.flash_attn_varlen_func(
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        0.0,
        causal=causal,
    )
    fla_out = output_pad_fn(fla_out_unpad)
275
    torch.testing.assert_close(out, fla_out, rtol=1e-2, atol=1e-2)
276

277
    print("All checks passed.✅")
278
279
280
281


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
282
283
284
285
    parser.add_argument("--batch", type=int, default=8, help="batch size")
    parser.add_argument("--heads", type=int, default=64, help="heads")
    parser.add_argument("--seq_len", type=int, default=2048, help="sequence length")
    parser.add_argument("--dim", type=int, default=128, help="dim")
286
287
288

    args = parser.parse_args()
    main(args.batch, args.heads, args.seq_len, args.dim)