"examples/vscode:/vscode.git/clone" did not exist on "fe02b8085bbf4243e7d5c2f8247f0be46ec67f18"
reference.py 12.8 KB
Newer Older
1
2
3
4
# ruff: noqa
from typing import Optional

import torch
5
from typing import Union
6
7
8
from einops import rearrange, repeat


9
10
11
12
13
14
15
16
17
18
19
20
21
22
def naive_nsa(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
    g_slc: torch.Tensor,
    g_swa: torch.Tensor,
    block_indices: torch.LongTensor,
    block_counts: Optional[Union[torch.LongTensor, int]] = None,
    block_size: int = 64,
    window_size: int = 0,
    scale: Optional[float] = None,
    cu_seqlens: Optional[torch.LongTensor] = None,
    head_first: bool = False,
) -> torch.Tensor:
23
24
25
    r"""
    Args:
        q (torch.Tensor):
26
            Queries of shape `[B, T, HQ, K]` if `head_first=False` else `[B, HQ, T, K]`.
27
        k (torch.Tensor):
28
            Keys of shape `[B, T, H, K]` if `head_first=False` else `[B, H, T, K]`.
29
30
            GQA is enforced here. The ratio of query heads (HQ) to key/value heads (H) must be a power of 2 and >=16.
        v (torch.Tensor):
31
32
33
34
35
            Values of shape `[B, T, H, V]` if `head_first=False` else `[B, H, T, V]`.
        g_slc (torch.Tensor):
            Gate score for selected attention of shape `[B, T, HQ]` if  `head_first=False` else `[B, HQ, T]`.
        g_swa (torch.Tensor):
            Gate score for sliding attentionof shape `[B, T, HQ]` if  `head_first=False` else `[B, HQ, T]`.
36
37
38
        block_indices (torch.LongTensor):
            Block indices of shape `[B, T, H, S]` if `head_first=False` else `[B, H, T, S]`.
            `S` is the maximum number of selected blocks for each query token, which is set to 16 in the paper.
39
40
41
42
43
        block_counts (Union[torch.LongTensor, int]):
            Number of selected blocks for each token.
            If a tensor is provided, with shape `[B, T, H]` if `head_first=True` else `[B, T, H]`,
            each token can select the same number of blocks.
            If not provided, it will default to `S`, Default: `None`.
44
45
        block_size (int):
            Selected block size. Default: 64.
46
47
        window_size (int):
            Sliding window size. Default: 0.
48
49
50
51
52
53
        scale (Optional[int]):
            Scale factor for attention scores.
            If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
        cu_seqlens (torch.LongTensor):
            Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
            consistent with the FlashAttention API.
54
55
        head_first (Optional[bool]):
            Whether the inputs are in the head-first format. Default: `False`.
56
57
58
59
60
61

    Returns:
        o (torch.Tensor):
            Outputs of shape `[B, T, HQ, V]` if `head_first=False` else `[B, HQ, T, V]`.
    """
    if scale is None:
62
        scale = k.shape[-1] ** -0.5
63
    if cu_seqlens is not None:
64
        assert q.shape[0] == 1, "batch size must be 1 when cu_seqlens are provided"
65
        if head_first:
66
            raise RuntimeError("Sequences with variable lengths are not supported for head-first mode")
67
    if head_first:
68
69
        q, k, v, block_indices = map(lambda x: rearrange(x, "b h t d -> b t h d"), (q, k, v, block_indices))
        g_slc, g_swa = map(lambda x: rearrange(x, "b h t -> b t h"), (g_slc, g_swa))
70
        if isinstance(block_counts, torch.Tensor):
71
            block_counts = rearrange(block_counts, "b h t -> b t h")
72
73
74
75
76

    dtype = q.dtype
    G = q.shape[2] // k.shape[2]
    BS = block_size
    S = block_indices.shape[-1]
77
    k, v, block_indices = (repeat(x, "b t h d -> b t (h g) d", g=G) for x in (k, v, block_indices))
78
    if isinstance(block_counts, torch.Tensor):
79
        block_counts = repeat(block_counts, "b t h -> b t (h g)", g=G)
80
81
82
    c = torch.arange(S).repeat_interleave(BS).unsqueeze(1).expand(-1, q.shape[2]).to(q.device)
    q, k, v = map(lambda x: x.float(), (q, k, v))

83
84
    o_slc = torch.zeros_like(v)
    o_swa = torch.zeros_like(v) if window_size > 0 else None
85
86
87
88
    varlen = True
    if cu_seqlens is None:
        varlen = False
        B, T = q.shape[:2]
89
        cu_seqlens = torch.cat([block_indices.new_tensor(range(0, B * T, T)), block_indices.new_tensor([B * T])])
90
91
92

    for i in range(len(cu_seqlens) - 1):
        if not varlen:
93
            q_b, k_b, v_b, g_slc_b, g_swa_b, i_b = q[i], k[i], v[i], g_slc[i], g_swa[i], block_indices[i]
94
95
96
97
            if isinstance(block_counts, torch.Tensor):
                s_b = block_counts[i]
            else:
                s_b = block_counts
98
99
        else:
            T = cu_seqlens[i + 1] - cu_seqlens[i]
100
            q_b, k_b, v_b, g_slc_b, g_swa_b, i_b = map(
101
102
                lambda x: x[0][cu_seqlens[i] : cu_seqlens[i + 1]], (q, k, v, g_slc, g_swa, block_indices)
            )
103
            if isinstance(block_counts, torch.Tensor):
104
                s_b = block_counts[0][cu_seqlens[i] : cu_seqlens[i + 1]]
105
106
            else:
                s_b = block_counts
107
108
109
110
111
112
113

        i_b = i_b.unsqueeze(-1) * BS + i_b.new_tensor(range(BS))
        # [T, S*BS, HQ]
        i_b = i_b.view(T, block_indices.shape[2], -1).transpose(1, 2)
        for i_q in range(T):
            # [HQ, D]
            q_i = q_b[i_q] * scale
114
115
116
117
            # [HQ]
            g_slc_i = g_slc_b[i_q]
            # [HQ]
            g_swa_i = g_swa_b[i_q]
118
119
            # [S*BS, HQ]
            i_i = i_b[i_q]
120
121
122
123
124
            # [HQ]
            if isinstance(block_counts, torch.Tensor):
                s_i = s_b[i_q]
            else:
                s_i = s_b
125
            # [S*BS, HQ, -1]
126
            k_i_slc, v_i_slc = map(lambda x: x.gather(0, i_i.clamp(0, T - 1).unsqueeze(-1).expand(*i_i.shape, x.shape[-1])), (k_b, v_b))
127
            # [S*BS, HQ]
128
129
130
131
132
            attn_slc = (
                torch.einsum("h d, n h d -> n h", q_i, k_i_slc)
                .masked_fill(torch.logical_or(i_i < 0, i_i > i_q) | (c >= s_i if block_counts is not None else False), float("-inf"))
                .softmax(0)
            )
133
            if not varlen:
134
                o_slc[i, i_q] = torch.einsum("n h, n h v -> h v", attn_slc, v_i_slc) * g_slc_i.unsqueeze(-1)
135
            else:
136
                o_slc[0][cu_seqlens[i] + i_q] = torch.einsum("n h, n h v -> h v", attn_slc, v_i_slc) * g_slc_i.unsqueeze(-1)
137
            if window_size > 0:
138
139
                k_i_swa, v_i_swa = map(lambda x: x[max(0, i_q - window_size + 1) : i_q + 1], (k_b, v_b))
                attn_swa = torch.einsum("h d, n h d -> n h", q_i, k_i_swa).softmax(0)
140
                if not varlen:
141
                    o_swa[i, i_q] = torch.einsum("n h, n h v -> h v", attn_swa, v_i_swa) * g_swa_i.unsqueeze(-1)
142
                else:
143
                    o_swa[0][cu_seqlens[i] + i_q] = torch.einsum("n h, n h v -> h v", attn_swa, v_i_swa) * g_swa_i.unsqueeze(-1)
144
145

    if head_first:
146
147
        o_slc = rearrange(o_slc, "b t h d -> b h t d")
        o_swa = rearrange(o_swa, "b t h d -> b h t d")
148
149
150
151

    return o_slc.to(dtype) + o_swa.to(dtype) if o_swa is not None else o_slc.to(dtype)


152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
def naive_nsa_simple(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
    block_indices: torch.LongTensor,
    block_counts: torch.LongTensor,
    block_size: int = 64,
) -> torch.Tensor:
    r"""
    Args:
        q (torch.Tensor):
            queries of shape `[B, T, HQ, K]` if `head_first=False` else `[B, HQ, T, K]`.
        k (torch.Tensor):
            keys of shape `[B, T, H, K]` if `head_first=False` else `[B, H, T, K]`.
            GQA is enforced here. The ratio of query heads (HQ) to key/value heads (H) must be a power of 2 and >=16.
        v (torch.Tensor):
            values of shape `[B, T, H, V]` if `head_first=False` else `[B, H, T, V]`.
        block_indices (torch.LongTensor):
            Block indices of shape `[B, T, H, S]` if `head_first=False` else `[B, H, T, S]`.
            `S` is the maximum number of selected blocks for each query token, which is set to 16 in the paper.
        block_counts (torch.LongTensor):
            Block counts of shape `[B, T, H]` if `head_first=False` else `[B, H, T]`.
        block_size (int):
            Selected block size. Default: 64.

    Returns:
        o (torch.Tensor):
            Outputs of shape `[B, T, HQ, V]` if `head_first=False` else `[B, HQ, T, V]`.
    """
181
    scale = k.shape[-1] ** -0.5
182
183
184
185
186
187
188
189
190

    dtype = q.dtype
    HQ = q.shape[2]
    H = k.shape[2]
    D = k.shape[-1]
    G = HQ // H
    BS = block_size
    S = block_indices.shape[-1]
    SELECTED_BLOCKS_SIZE = S * BS
191
192
    k, v, block_indices = (repeat(x, "b t h d -> b t (h g) d", g=G) for x in (k, v, block_indices))
    block_counts = repeat(block_counts, "b t h -> b t (h g)", g=G)
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    c = torch.arange(S).repeat_interleave(BS).unsqueeze(1).expand(-1, q.shape[2]).to(q.device)
    q, k, v = map(lambda x: x.float(), (q, k, v))
    o = torch.zeros_like(v)
    B, T = q.shape[:2]

    for i in range(B):
        q_b, k_b, v_b, i_b, s_b = q[i], k[i], v[i], block_indices[i], block_counts[i]
        # [T, HQ, S, BS] -> [T, HQ, S*BS]
        i_b = i_b.unsqueeze(-1) * BS + i_b.new_tensor(range(BS))
        # [T, HQ, S*BS] -> [T, S*BS, HQ]
        i_b = i_b.view(T, block_indices.shape[2], -1).transpose(1, 2)
        for i_q in range(T):
            # [HQ, D]
            q_i = q_b[i_q] * scale
            # [S*BS, HQ] -> represents selected blocks for each query token
            i_i = i_b[i_q]
            # [HQ] -> represents the number of selected blocks for each query token
            s_i = s_b[i_q]

            k_i = torch.zeros((S * BS, HQ, D), device=k_b.device, dtype=k_b.dtype)
            v_i = torch.zeros((S * BS, HQ, D), device=v_b.device, dtype=v_b.dtype)

            for h in range(HQ):
                for t in range(SELECTED_BLOCKS_SIZE):
                    selected_block_index = i_i[t, h]
                    k_i[t, h] = k_b[selected_block_index, h, :]
                    v_i[t, h] = v_b[selected_block_index, h, :]

            # [S*BS, HQ]
222
223
            attn = torch.einsum("h d, n h d -> n h", q_i, k_i)
            attn = attn.masked_fill((i_i > i_q) | (c >= s_i), float("-inf"))
224
            attn = torch.softmax(attn, dim=0)
225
            o[i, i_q] = torch.einsum("n h, n h v -> h v", attn, v_i)
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

    return o.to(dtype)


def naive_nsa_simple_inference(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
    block_indices: torch.LongTensor,
    block_counts: torch.LongTensor,
    block_size: int = 64,
) -> torch.Tensor:
    r"""
    Args:
        q (torch.Tensor):
            queries of shape `[B, 1, HQ, K]` if `head_first=False` else `[B, HQ, T, K]`.
        k (torch.Tensor):
            keys of shape `[B, T, H, K]` if `head_first=False` else `[B, H, T, K]`.
            GQA is enforced here. The ratio of query heads (HQ) to key/value heads (H) must be a power of 2 and >=16.
        v (torch.Tensor):
            values of shape `[B, T, H, V]` if `head_first=False` else `[B, H, T, V]`.
        block_indices (torch.LongTensor):
            Block indices of shape `[B, 1, H, S]` if `head_first=False` else `[B, H, T, S]`.
            `S` is the maximum number of selected blocks for each query token, which is set to 16 in the paper.
        block_counts (torch.LongTensor):
            Block counts of shape `[B, 1, H]` if `head_first=False` else `[B, H, T]`.
        block_size (int):
            Selected block size. Default: 64.

    Returns:
        o (torch.Tensor):
            Outputs of shape `[B, 1, HQ, V]` if `head_first=False` else `[B, HQ, T, V]`.
    """
259
    scale = k.shape[-1] ** -0.5
260
261
262
263
264
265
266
267
268

    dtype = q.dtype
    HQ = q.shape[2]
    H = k.shape[2]
    D = k.shape[-1]
    G = HQ // H
    BS = block_size
    S = block_indices.shape[-1]
    SELECTED_BLOCKS_SIZE = S * BS
269
270
    k, v, block_indices = (repeat(x, "b t h d -> b t (h g) d", g=G) for x in (k, v, block_indices))
    block_counts = repeat(block_counts, "b t h -> b t (h g)", g=G)
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
    c = torch.arange(S).repeat_interleave(BS).unsqueeze(1).expand(-1, q.shape[2]).to(q.device)
    q, k, v = map(lambda x: x.float(), (q, k, v))
    o = torch.zeros_like(q)
    B, T = q.shape[:2]

    for i in range(B):
        q_b, k_b, v_b, i_b, s_b = q[i], k[i], v[i], block_indices[i], block_counts[i]
        # [T, HQ, S, BS] -> [T, HQ, S*BS]
        i_b = i_b.unsqueeze(-1) * BS + i_b.new_tensor(range(BS))
        # [T, HQ, S*BS] -> [T, S*BS, HQ]
        i_b = i_b.view(T, block_indices.shape[2], -1).transpose(1, 2)

        # [HQ, D]
        q_i = q_b[0] * scale
        # [S*BS, HQ] -> represents selected blocks for each query token
        i_i = i_b[0]
        # [HQ] -> represents the number of selected blocks for each query token
        s_i = s_b[0]

        k_i = torch.zeros((S * BS, HQ, D), device=k_b.device, dtype=k_b.dtype)
        v_i = torch.zeros((S * BS, HQ, D), device=v_b.device, dtype=v_b.dtype)

        for h in range(HQ):
            for t in range(SELECTED_BLOCKS_SIZE):
                selected_block_index = i_i[t, h]
                k_i[t, h] = k_b[selected_block_index, h, :]
                v_i[t, h] = v_b[selected_block_index, h, :]

        # [S*BS, HQ]
300
301
        attn = torch.einsum("h d, n h d -> n h", q_i, k_i)
        attn = attn.masked_fill((c >= s_i), float("-inf"))
302
        attn = torch.softmax(attn, dim=0)
303
        o[i, 0] = torch.einsum("n h, n h v -> h v", attn, v_i)
304
305

    return o.to(dtype)