example_triton_nsa_fwd_varlen.py 14.3 KB
Newer Older
1
2
3
# ruff: noqa
import torch
from typing import Optional, Union
4
from packaging.version import parse
5
6
7
8
9

import torch
import triton
import triton.language as tl

10
import fla
11

12
13
14
15
if parse(fla.__version__) < parse("0.2.1"):
    from fla.ops.common.utils import prepare_token_indices
else:
    from fla.ops.utils import prepare_token_indices
16
17
18
19
20
from fla.utils import autocast_custom_fwd, contiguous
from reference import naive_nsa
from einops import rearrange


21
22
23
24
25
26
@triton.heuristics(
    {
        "USE_OFFSETS": lambda args: args["offsets"] is not None,
        "USE_BLOCK_COUNTS": lambda args: isinstance(args["block_counts"], torch.Tensor),
    }
)
27
28
@triton.autotune(
    configs=[triton.Config({}, num_warps=num_warps) for num_warps in [1, 2, 4, 8]],
29
    key=["BS", "BK", "BV"],
30
31
)
@triton.jit
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
def parallel_nsa_fwd_kernel(
    q,
    k,
    v,
    o_slc,
    o_swa,
    lse_slc,
    lse_swa,
    scale,
    block_indices,
    block_counts,
    offsets,
    token_indices,
    T,
    H: tl.constexpr,
    HQ: tl.constexpr,
    G: tl.constexpr,
    K: tl.constexpr,
    V: tl.constexpr,
    S: tl.constexpr,
    BS: tl.constexpr,
    WS: tl.constexpr,
    BK: tl.constexpr,
    BV: tl.constexpr,
    USE_OFFSETS: tl.constexpr,
    USE_BLOCK_COUNTS: tl.constexpr,
):
59
60
61
62
    i_t, i_v, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
    i_b, i_h = i_bh // H, i_bh % H

    if USE_OFFSETS:
63
        i_n, i_t = tl.load(token_indices + i_t * 2).to(tl.int32), tl.load(token_indices + i_t * 2 + 1).to(tl.int32)
64
65
66
67
68
69
70
71
72
73
74
75
76
77
        bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
        T = eos - bos
    else:
        bos, eos = i_b * T, i_b * T + T

    k += (bos * H + i_h) * K
    v += (bos * H + i_h) * V
    block_indices += (bos + i_t) * H * S + i_h * S

    if USE_BLOCK_COUNTS:
        NS = tl.load(block_counts + (bos + i_t) * H + i_h)
    else:
        NS = S

78
    p_q = tl.make_block_ptr(q + (bos + i_t) * HQ * K, (HQ, K), (K, 1), (i_h * G, 0), (G, BK), (1, 0))
79
80
81
82
83
    # the Q block is kept in the shared memory throughout the whole kernel
    # [G, BK]
    b_q = tl.load(p_q, boundary_check=(0, 1))
    b_q = (b_q * scale).to(b_q.dtype)

84
    p_o_slc = tl.make_block_ptr(o_slc + (bos + i_t) * HQ * V, (HQ, V), (V, 1), (i_h * G, i_v * BV), (G, BV), (1, 0))
85
86
87
88
    p_lse_slc = lse_slc + (bos + i_t) * HQ + i_h * G + tl.arange(0, G)
    # [G, BV]
    b_o_slc = tl.zeros([G, BV], dtype=tl.float32)

89
    b_m_slc = tl.full([G], float("-inf"), dtype=tl.float32)
90
91
92
93
94
95
96
97
98
99
100
101
    b_acc_slc = tl.zeros([G], dtype=tl.float32)
    for i in range(NS):
        i_s = tl.load(block_indices + i).to(tl.int32) * BS
        if i_s <= i_t and i_s >= 0:
            p_k_slc = tl.make_block_ptr(k, (K, T), (1, H * K), (0, i_s), (BK, BS), (0, 1))
            p_v_slc = tl.make_block_ptr(v, (T, V), (H * V, 1), (i_s, i_v * BV), (BS, BV), (1, 0))
            # [BK, BS]
            b_k_slc = tl.load(p_k_slc, boundary_check=(0, 1))
            # [BS, BV]
            b_v_slc = tl.load(p_v_slc, boundary_check=(0, 1))
            # [G, BS]
            b_s_slc = tl.dot(b_q, b_k_slc)
102
            b_s_slc = tl.where((i_t >= (i_s + tl.arange(0, BS)))[None, :], b_s_slc, float("-inf"))
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

            # [G]
            b_m_slc, b_mp_slc = tl.maximum(b_m_slc, tl.max(b_s_slc, 1)), b_m_slc
            b_r_slc = tl.exp(b_mp_slc - b_m_slc)
            # [G, BS]
            b_p_slc = tl.exp(b_s_slc - b_m_slc[:, None])
            # [G]
            b_acc_slc = b_acc_slc * b_r_slc + tl.sum(b_p_slc, 1)
            # [G, BV]
            b_o_slc = b_o_slc * b_r_slc[:, None] + tl.dot(b_p_slc.to(b_q.dtype), b_v_slc)

            b_mp_slc = b_m_slc
    b_o_slc = b_o_slc / b_acc_slc[:, None]
    b_m_slc += tl.log(b_acc_slc)
    tl.store(p_o_slc, b_o_slc.to(p_o_slc.dtype.element_ty), boundary_check=(0, 1))
    tl.store(p_lse_slc, b_m_slc.to(p_lse_slc.dtype.element_ty))

    if WS > 0:
121
        p_o_swa = tl.make_block_ptr(o_swa + (bos + i_t) * HQ * V, (HQ, V), (V, 1), (i_h * G, i_v * BV), (G, BV), (1, 0))
122
123
124
125
        p_lse_swa = lse_swa + (bos + i_t) * HQ + i_h * G + tl.arange(0, G)
        # [G, BV]
        b_o_swa = tl.zeros([G, BV], dtype=tl.float32)

126
        b_m_swa = tl.full([G], float("-inf"), dtype=tl.float32)
127
128
129
130
131
132
133
134
135
136
        b_acc_swa = tl.zeros([G], dtype=tl.float32)
        for i_s in range(max(0, i_t - WS + 1), i_t + 1, BS):
            p_k_swa = tl.make_block_ptr(k, (K, T), (1, H * K), (0, i_s), (BK, BS), (0, 1))
            p_v_swa = tl.make_block_ptr(v, (T, V), (H * V, 1), (i_s, i_v * BV), (BS, BV), (1, 0))
            # [BK, BS]
            b_k_swa = tl.load(p_k_swa, boundary_check=(0, 1))
            # [BS, BV]
            b_v_swa = tl.load(p_v_swa, boundary_check=(0, 1))
            # [G, BS]
            b_s_swa = tl.dot(b_q, b_k_swa)
137
            b_s_swa = tl.where((i_t >= (i_s + tl.arange(0, BS)))[None, :], b_s_swa, float("-inf"))
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

            # [G]
            b_m_swa, b_mp_swa = tl.maximum(b_m_swa, tl.max(b_s_swa, 1)), b_m_swa
            b_r_swa = tl.exp(b_mp_swa - b_m_swa)
            # [G, BS]
            b_p_swa = tl.exp(b_s_swa - b_m_swa[:, None])
            # [G]
            b_acc_swa = b_acc_swa * b_r_swa + tl.sum(b_p_swa, 1)
            # [G, BV]
            b_o_swa = b_o_swa * b_r_swa[:, None] + tl.dot(b_p_swa.to(b_q.dtype), b_v_swa)

            b_mp_swa = b_m_swa
        b_o_swa = b_o_swa / b_acc_swa[:, None]
        b_m_swa += tl.log(b_acc_swa)
        tl.store(p_o_swa, b_o_swa.to(p_o_swa.dtype.element_ty), boundary_check=(0, 1))
        tl.store(p_lse_swa, b_m_swa.to(p_lse_swa.dtype.element_ty))


def parallel_nsa_fwd(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
    block_indices: torch.LongTensor,
    block_counts: Union[torch.LongTensor, int],
    block_size: int,
    window_size: int,
    scale: float,
    offsets: Optional[torch.LongTensor] = None,
    token_indices: Optional[torch.LongTensor] = None,
):
    B, T, H, K, V, S = *k.shape, v.shape[-1], block_indices.shape[-1]
    HQ = q.shape[2]
    G = HQ // H
    BS = block_size
    WS = window_size
    if torch.cuda.get_device_capability()[0] >= 9:
        BK = min(256, triton.next_power_of_2(K))
        BV = min(256, triton.next_power_of_2(V))
    else:
        BK = min(128, triton.next_power_of_2(K))
        BV = min(128, triton.next_power_of_2(V))
    NK = triton.cdiv(K, BK)
    NV = triton.cdiv(V, BV)
    assert NK == 1, "The key dimension can not be larger than 256"

    grid = (T, NV, B * H)
    o_slc = torch.empty(B, T, HQ, V, dtype=v.dtype, device=q.device)
    o_swa = torch.empty(B, T, HQ, V, dtype=v.dtype, device=q.device) if window_size > 0 else None
    lse_slc = torch.empty(B, T, HQ, dtype=torch.float, device=q.device)
    lse_swa = torch.empty(B, T, HQ, dtype=torch.float, device=q.device) if window_size > 0 else None

    parallel_nsa_fwd_kernel[grid](
        q=q,
        k=k,
        v=v,
        o_slc=o_slc,
        o_swa=o_swa,
        lse_slc=lse_slc,
        lse_swa=lse_swa,
        scale=scale,
        block_indices=block_indices,
        block_counts=block_counts,
        offsets=offsets,
        token_indices=token_indices,
        T=T,
        H=H,
        HQ=HQ,
        G=G,
        K=K,
        V=V,
        S=S,
        BS=BS,
        WS=WS,
        BK=BK,
        BV=BV,
    )
    return o_slc, lse_slc, o_swa, lse_swa


@torch.compile
class ParallelNSAFunction(torch.autograd.Function):
    @staticmethod
    @contiguous
    @autocast_custom_fwd
    def forward(ctx, q, k, v, block_indices, block_counts, block_size, window_size, scale, offsets):
        ctx.dtype = q.dtype

        # 2-d sequence indices denoting the offsets of tokens in each sequence
        # for example, if the passed `offsets` is [0, 2, 6],
        # then there are 2 and 4 tokens in the 1st and 2nd sequences respectively, and `token_indices` will be
        # [[0, 0], [0, 1], [1, 0], [1, 1], [1, 2], [1, 3]]
        token_indices = prepare_token_indices(offsets) if offsets is not None else None

        o_slc, lse_slc, o_swa, lse_swa = parallel_nsa_fwd(
            q=q,
            k=k,
            v=v,
            block_indices=block_indices,
            block_counts=block_counts,
            block_size=block_size,
            window_size=window_size,
            scale=scale,
            offsets=offsets,
241
242
            token_indices=token_indices,
        )
243
244
245
246
247
248
249
250
251
252
253
        ctx.save_for_backward(q, k, v, o_slc, lse_slc, o_swa, lse_swa)
        ctx.block_indices = block_indices
        ctx.block_counts = block_counts
        ctx.offsets = offsets
        ctx.token_indices = token_indices
        ctx.block_size = block_size
        ctx.window_size = window_size
        ctx.scale = scale
        return o_slc.to(q.dtype), o_swa.to(q.dtype) if o_swa is not None else o_swa


254
255
256
257
258
259
260
261
262
263
264
265
266
267
def parallel_nsa(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
    g_slc: torch.Tensor,
    g_swa: torch.Tensor,
    block_indices: torch.LongTensor,
    block_counts: Optional[Union[torch.LongTensor, int]] = None,
    block_size: int = 64,
    window_size: int = 0,
    scale: Optional[float] = None,
    cu_seqlens: Optional[torch.LongTensor] = None,
    head_first: bool = False,
) -> torch.Tensor:
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
    r"""
    Args:
        q (torch.Tensor):
            queries of shape `[B, T, HQ, K]` if `head_first=False` else `[B, HQ, T, K]`.
        k (torch.Tensor):
            keys of shape `[B, T, H, K]` if `head_first=False` else `[B, H, T, K]`.
            GQA is enforced here. The ratio of query heads (HQ) to key/value heads (H) must be a power of 2 and >=16.
        v (torch.Tensor):
            values of shape `[B, T, H, V]` if `head_first=False` else `[B, H, T, V]`.
        g_slc (torch.Tensor):
            Gate score for selected attention of shape `[B, T, HQ]` if  `head_first=False` else `[B, HQ, T]`.
        g_swa (torch.Tensor):
            Gate score for sliding attentionof shape `[B, T, HQ]` if  `head_first=False` else `[B, HQ, T]`.
        block_indices (torch.LongTensor):
            Block indices of shape `[B, T, H, S]` if `head_first=False` else `[B, H, T, S]`.
            `S` is the number of selected blocks for each query token, which is set to 16 in the paper.
        block_counts (Union[torch.LongTensor, int]):
            Number of selected blocks for each token.
            If a tensor is provided, with shape `[B, T, H]` if `head_first=True` else `[B, T, H]`,
            each token can select the same number of blocks.
            If not provided, it will default to `S`, Default: `None`
        block_size (int):
            Selected block size. Default: 64.
        window_size (int):
            Sliding window size. Default: 0.
        scale (Optional[int]):
            Scale factor for attention scores.
            If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
        head_first (Optional[bool]):
            Whether the inputs are in the head-first format. Default: `False`.
        cu_seqlens (torch.LongTensor):
            Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
            consistent with the FlashAttention API.

    Returns:
        o (torch.Tensor):
            Outputs of shape `[B, T, HQ, V]` if `head_first=False` else `[B, HQ, T, V]`.
    """
    if scale is None:
307
        scale = k.shape[-1] ** -0.5
308
309
310
    if cu_seqlens is not None:
        assert q.shape[0] == 1, "batch size must be 1 when cu_seqlens are provided"
    if head_first:
311
312
        q, k, v, block_indices = map(lambda x: rearrange(x, "b h t d -> b t h d"), (q, k, v, block_indices))
        g_slc, g_swa = map(lambda x: rearrange(x, "b h t -> b t h"), (g_slc, g_swa))
313
        if isinstance(block_counts, torch.Tensor):
314
            block_counts = rearrange(block_counts, "b h t -> b t h")
315
316
317
318
319
320
    assert q.shape[2] % (k.shape[2] * 16) == 0, "Group size must be a multiple of 16 in NSA"

    if isinstance(block_counts, int):
        block_indices = block_indices[:, :, :, :block_counts]
        block_counts = None

321
    o_slc, o_swa = ParallelNSAFunction.apply(q, k, v, block_indices, block_counts, block_size, window_size, scale, cu_seqlens)
322
323
324
325
326
    if window_size > 0:
        o = torch.addcmul(o_slc * g_slc.unsqueeze(-1), o_swa, g_swa.unsqueeze(-1))
    else:
        o = o_slc * g_slc.unsqueeze(-1)
    if head_first:
327
        o = rearrange(o, "b t h d -> b h t d")
328
329
330
331
332
333
334
    return o


if __name__ == "__main__":
    N, T, H, HQ, D, S, block_size, dtype = 2, 64, 1, 16, 64, 1, 32, torch.float16
    torch.manual_seed(42)
    # randomly split the sequence into N segments
335
336
337
338
339
340
341
342
    offsets = (
        torch.cat(
            [torch.tensor([0], dtype=torch.long), torch.arange(16, T)[torch.randperm(T - 1)[: N - 1]], torch.tensor([T], dtype=torch.long)],
            0,
        )
        .cuda()
        .sort()[0]
    )
343
344
    # offsets.shape is [N+1]
    # seq-first required for inputs with variable lengths
345
346
347
348
349
350
351
352
353
    perm_q = torch.randperm(T, device="cuda")
    perm_k = torch.randperm(T, device="cuda")
    perm_v = torch.randperm(T, device="cuda")
    q = torch.linspace(0, 1, steps=T, dtype=dtype, device="cuda")[perm_q].view(1, T, 1, 1).expand(1, T, HQ, D).clone().requires_grad_(True)
    k = torch.linspace(0, 1, steps=T, dtype=dtype, device="cuda")[perm_k].view(1, T, 1, 1).expand(1, T, H, D).clone().requires_grad_(True)
    v = torch.linspace(0, 1, steps=T, dtype=dtype, device="cuda")[perm_v].view(1, T, 1, 1).expand(1, T, H, D).clone().requires_grad_(True)
    g_slc = torch.rand((1, T, HQ), dtype=dtype, device="cuda").requires_grad_(True)
    g_swa = torch.rand((1, T, HQ), dtype=dtype, device="cuda").requires_grad_(True)
    do = torch.randn((1, T, HQ, D), dtype=dtype, device="cuda")
354
355

    token_indices = prepare_token_indices(offsets).tolist()
356
    block_indices = torch.full((1, T, H, S), T, dtype=torch.long, device="cuda")
357
358
359
360
    for i in range(T):
        _, t = token_indices[i]
        for h in range(H):
            i_i = torch.randperm(max(1, triton.cdiv(t, block_size)))[:S]
361
            block_indices[0, i, h, : len(i_i)] = i_i
362
    block_indices = block_indices.sort(-1)[0]
363
    block_counts = torch.randint(1, S + 1, (1, T, H), device="cuda")
364
365
366
367
368
369
370
371
372
373

    ref = naive_nsa(
        q=q,
        k=k,
        v=v,
        g_slc=g_slc,
        g_swa=g_swa,
        block_indices=block_indices,
        block_counts=block_counts,
        block_size=block_size,
374
375
        cu_seqlens=offsets,
    )
376
377
378
379
380
381
382
383
384
385

    tri = parallel_nsa(
        q=q,
        k=k,
        v=v,
        g_slc=g_slc,
        g_swa=g_swa,
        block_indices=block_indices,
        block_counts=block_counts,
        block_size=block_size,
386
387
        cu_seqlens=offsets,
    )
388
389
390
391
392

    print("tri", tri)
    print("ref", ref)

    torch.testing.assert_close(ref, tri, atol=1e-2, rtol=1e-2)