example_triton_nsa_fwd.py 12.5 KB
Newer Older
1
2
# ruff: noqa
import torch
3
from typing import Optional, Union
4
from packaging.version import parse
5
6
7
8
9

import torch
import triton
import triton.language as tl

10
import fla
11

12
13
14
15
if parse(fla.__version__) < parse("0.2.1"):
    from fla.ops.common.utils import prepare_token_indices
else:
    from fla.ops.utils import prepare_token_indices
16
17
18
from fla.utils import autocast_custom_fwd, contiguous
from reference import naive_nsa
from einops import rearrange
19
20


21
22
23
24
25
26
@triton.heuristics(
    {
        "USE_OFFSETS": lambda args: args["offsets"] is not None,
        "USE_BLOCK_COUNTS": lambda args: isinstance(args["block_counts"], torch.Tensor),
    }
)
27
@triton.autotune(
28
    configs=[triton.Config({}, num_warps=num_warps) for num_warps in [1]],
29
    key=["BS", "BK", "BV"],
30
31
)
@triton.jit
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
def parallel_nsa_fwd_kernel(
    q,
    k,
    v,
    o_slc,
    o_swa,
    lse_slc,
    lse_swa,
    scale,
    block_indices,
    block_counts,
    offsets,
    token_indices,
    T,
    H: tl.constexpr,
    HQ: tl.constexpr,
    G: tl.constexpr,
    K: tl.constexpr,
    V: tl.constexpr,
    S: tl.constexpr,
    BS: tl.constexpr,
    WS: tl.constexpr,
    BK: tl.constexpr,
    BV: tl.constexpr,
    USE_OFFSETS: tl.constexpr,
    USE_BLOCK_COUNTS: tl.constexpr,
):
59
    i_t, i_v, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
60
61
62
63
64
65
66
67
    i_b, i_h = i_bh // H, i_bh % H

    bos, eos = i_b * T, i_b * T + T

    k += (bos * H + i_h) * K
    v += (bos * H + i_h) * V
    block_indices += (bos + i_t) * H * S + i_h * S

68
69
70
    # if USE_BLOCK_COUNTS:
    #     NS = tl.load(block_counts + (bos + i_t) * H + i_h)
    # else:
71
72
    NS = S

73
    p_q = tl.make_block_ptr(q + (bos + i_t) * HQ * K, (HQ, K), (K, 1), (i_h * G, 0), (G, BK), (1, 0))
74
75
76
77
    # the Q block is kept in the shared memory throughout the whole kernel
    # [G, BK]
    b_q = tl.load(p_q, boundary_check=(0, 1))
    b_q = (b_q * scale).to(b_q.dtype)
78

79
    p_o_slc = tl.make_block_ptr(o_slc + (bos + i_t) * HQ * V, (HQ, V), (V, 1), (i_h * G, i_v * BV), (G, BV), (1, 0))
80
    p_lse_slc = lse_slc + (bos + i_t) * HQ + i_h * G + tl.arange(0, G)
81
    # [G, BV]
82
    b_o_slc = tl.zeros([G, BV], dtype=tl.float32)
83

84
    b_m_slc = tl.full([G], float("-inf"), dtype=tl.float32)
85
    b_acc_slc = tl.zeros([G], dtype=tl.float32)
86
87
    for i in range(NS):
        i_s = tl.load(block_indices + i).to(tl.int32) * BS
88
89
90
        if i_s <= i_t and i_s >= 0:
            p_k_slc = tl.make_block_ptr(k, (K, T), (1, H * K), (0, i_s), (BK, BS), (0, 1))
            p_v_slc = tl.make_block_ptr(v, (T, V), (H * V, 1), (i_s, i_v * BV), (BS, BV), (1, 0))
91
            # [BK, BS]
92
            b_k_slc = tl.load(p_k_slc, boundary_check=(0, 1))
93
            # [BS, BV]
94
            b_v_slc = tl.load(p_v_slc, boundary_check=(0, 1))
95
            # [G, BS]
96
            b_s_slc = tl.dot(b_q, b_k_slc)
97
            b_s_slc = tl.where((i_t >= (i_s + tl.arange(0, BS)))[None, :], b_s_slc, float("-inf"))
98
99

            # [G]
100
101
            b_m_slc, b_mp_slc = tl.maximum(b_m_slc, tl.max(b_s_slc, 1)), b_m_slc
            b_r_slc = tl.exp(b_mp_slc - b_m_slc)
102
            # [G, BS]
103
            b_p_slc = tl.exp(b_s_slc - b_m_slc[:, None])
104
            # [G]
105
            b_acc_slc = b_acc_slc * b_r_slc + tl.sum(b_p_slc, 1)
106
            # [G, BV]
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
            b_o_slc = b_o_slc * b_r_slc[:, None] + tl.dot(b_p_slc.to(b_q.dtype), b_v_slc)

            b_mp_slc = b_m_slc
    b_o_slc = b_o_slc / b_acc_slc[:, None]
    b_m_slc += tl.log(b_acc_slc)
    tl.store(p_o_slc, b_o_slc.to(p_o_slc.dtype.element_ty), boundary_check=(0, 1))
    tl.store(p_lse_slc, b_m_slc.to(p_lse_slc.dtype.element_ty))


class ParallelNSAFunction(torch.autograd.Function):
    @staticmethod
    @contiguous
    @autocast_custom_fwd
    def forward(ctx, q, k, v, block_indices, block_size, scale, offsets):
        ctx.dtype = q.dtype

        # 2-d sequence indices denoting the offsets of tokens in each sequence
        # for example, if the passed `offsets` is [0, 2, 6],
        # then there are 2 and 4 tokens in the 1st and 2nd sequences respectively, and `token_indices` will be
        # [[0, 0], [0, 1], [1, 0], [1, 1], [1, 2], [1, 3]]
        token_indices = prepare_token_indices(offsets) if offsets is not None else None
128

129
        o, lse = parallel_nsa_fwd(q=q, k=k, v=v, block_indices=block_indices, block_size=block_size, scale=scale)
130
131
132
133
134
        ctx.save_for_backward(q, k, v, o, lse)
        ctx.block_indices = block_indices
        ctx.block_size = block_size
        ctx.scale = scale
        return o.to(q.dtype)
135
136
137
138
139
140


def parallel_nsa_fwd(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
141
142
    block_indices: torch.LongTensor,
    block_counts: Union[torch.LongTensor, int],
143
    block_size: int,
144
    window_size: int,
145
    scale: float,
146
147
    offsets: Optional[torch.LongTensor] = None,
    token_indices: Optional[torch.LongTensor] = None,
148
149
150
151
152
):
    B, T, H, K, V, S = *k.shape, v.shape[-1], block_indices.shape[-1]
    HQ = q.shape[2]
    G = HQ // H
    BS = block_size
153
    WS = window_size
154
155
156
157
158
159
160
161
162
163
    if torch.cuda.get_device_capability()[0] >= 9:
        BK = min(256, triton.next_power_of_2(K))
        BV = min(256, triton.next_power_of_2(V))
    else:
        BK = min(128, triton.next_power_of_2(K))
        BV = min(128, triton.next_power_of_2(V))
    NK = triton.cdiv(K, BK)
    NV = triton.cdiv(V, BV)
    assert NK == 1, "The key dimension can not be larger than 256"

164
165
166
167
168
169
    grid = (T, NV, B * H)
    o_slc = torch.empty(B, T, HQ, V, dtype=v.dtype, device=q.device)
    o_swa = torch.empty(B, T, HQ, V, dtype=v.dtype, device=q.device) if window_size > 0 else None
    lse_slc = torch.empty(B, T, HQ, dtype=torch.float, device=q.device)
    lse_swa = torch.empty(B, T, HQ, dtype=torch.float, device=q.device) if window_size > 0 else None

170
171
172
173
    parallel_nsa_fwd_kernel[grid](
        q=q,
        k=k,
        v=v,
174
175
176
177
        o_slc=o_slc,
        o_swa=o_swa,
        lse_slc=lse_slc,
        lse_swa=lse_swa,
178
179
        scale=scale,
        block_indices=block_indices,
180
181
182
183
        block_counts=block_counts,
        offsets=offsets,
        token_indices=token_indices,
        T=T,
184
185
186
187
188
189
190
        H=H,
        HQ=HQ,
        G=G,
        K=K,
        V=V,
        S=S,
        BS=BS,
191
        WS=WS,
192
193
194
        BK=BK,
        BV=BV,
    )
195
    return o_slc, lse_slc, o_swa, lse_swa
196
197


198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
@torch.compile
class ParallelNSAFunction(torch.autograd.Function):
    @staticmethod
    @contiguous
    @autocast_custom_fwd
    def forward(ctx, q, k, v, block_indices, block_counts, block_size, window_size, scale, offsets):
        ctx.dtype = q.dtype

        # 2-d sequence indices denoting the offsets of tokens in each sequence
        # for example, if the passed `offsets` is [0, 2, 6],
        # then there are 2 and 4 tokens in the 1st and 2nd sequences respectively, and `token_indices` will be
        # [[0, 0], [0, 1], [1, 0], [1, 1], [1, 2], [1, 3]]
        token_indices = prepare_token_indices(offsets) if offsets is not None else None

        o_slc, lse_slc, o_swa, lse_swa = parallel_nsa_fwd(
            q=q,
            k=k,
            v=v,
            block_indices=block_indices,
            block_counts=block_counts,
            block_size=block_size,
            window_size=window_size,
            scale=scale,
            offsets=offsets,
222
223
            token_indices=token_indices,
        )
224
225
226
227
228
229
230
231
232
233
234
        ctx.save_for_backward(q, k, v, o_slc, lse_slc, o_swa, lse_swa)
        ctx.block_indices = block_indices
        ctx.block_counts = block_counts
        ctx.offsets = offsets
        ctx.token_indices = token_indices
        ctx.block_size = block_size
        ctx.window_size = window_size
        ctx.scale = scale
        return o_slc.to(q.dtype), o_swa.to(q.dtype) if o_swa is not None else o_swa


235
236
237
238
239
240
241
242
243
244
245
246
247
248
def parallel_nsa(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
    g_slc: torch.Tensor,
    g_swa: torch.Tensor,
    block_indices: torch.LongTensor,
    block_counts: Optional[Union[torch.LongTensor, int]] = None,
    block_size: int = 64,
    window_size: int = 0,
    scale: Optional[float] = None,
    cu_seqlens: Optional[torch.LongTensor] = None,
    head_first: bool = False,
) -> torch.Tensor:
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
    r"""
    Args:
        q (torch.Tensor):
            queries of shape `[B, T, HQ, K]` if `head_first=False` else `[B, HQ, T, K]`.
        k (torch.Tensor):
            keys of shape `[B, T, H, K]` if `head_first=False` else `[B, H, T, K]`.
            GQA is enforced here. The ratio of query heads (HQ) to key/value heads (H) must be a power of 2 and >=16.
        v (torch.Tensor):
            values of shape `[B, T, H, V]` if `head_first=False` else `[B, H, T, V]`.
        g_slc (torch.Tensor):
            Gate score for selected attention of shape `[B, T, HQ]` if  `head_first=False` else `[B, HQ, T]`.
        g_swa (torch.Tensor):
            Gate score for sliding attentionof shape `[B, T, HQ]` if  `head_first=False` else `[B, HQ, T]`.
        block_indices (torch.LongTensor):
            Block indices of shape `[B, T, H, S]` if `head_first=False` else `[B, H, T, S]`.
            `S` is the number of selected blocks for each query token, which is set to 16 in the paper.
        block_counts (Union[torch.LongTensor, int]):
            Number of selected blocks for each token.
            If a tensor is provided, with shape `[B, T, H]` if `head_first=True` else `[B, T, H]`,
            each token can select the same number of blocks.
            If not provided, it will default to `S`, Default: `None`
        block_size (int):
            Selected block size. Default: 64.
        window_size (int):
            Sliding window size. Default: 0.
        scale (Optional[int]):
            Scale factor for attention scores.
            If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
        head_first (Optional[bool]):
            Whether the inputs are in the head-first format. Default: `False`.
        cu_seqlens (torch.LongTensor):
            Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
            consistent with the FlashAttention API.

    Returns:
        o (torch.Tensor):
            Outputs of shape `[B, T, HQ, V]` if `head_first=False` else `[B, HQ, T, V]`.
    """
    if scale is None:
288
        scale = k.shape[-1] ** -0.5
289
290
291
    if cu_seqlens is not None:
        assert q.shape[0] == 1, "batch size must be 1 when cu_seqlens are provided"
    if head_first:
292
293
        q, k, v, block_indices = map(lambda x: rearrange(x, "b h t d -> b t h d"), (q, k, v, block_indices))
        g_slc, g_swa = map(lambda x: rearrange(x, "b h t -> b t h"), (g_slc, g_swa))
294
        if isinstance(block_counts, torch.Tensor):
295
            block_counts = rearrange(block_counts, "b h t -> b t h")
296
297
298
299
300
301
    assert q.shape[2] % (k.shape[2] * 16) == 0, "Group size must be a multiple of 16 in NSA"

    if isinstance(block_counts, int):
        block_indices = block_indices[:, :, :, :block_counts]
        block_counts = None

302
    o_slc, o_swa = ParallelNSAFunction.apply(q, k, v, block_indices, block_counts, block_size, window_size, scale, cu_seqlens)
303
304
305
306
307
    if window_size > 0:
        o = torch.addcmul(o_slc * g_slc.unsqueeze(-1), o_swa, g_swa.unsqueeze(-1))
    else:
        o = o_slc * g_slc.unsqueeze(-1)
    if head_first:
308
        o = rearrange(o, "b t h d -> b h t d")
309
310
311
    return o


312
if __name__ == "__main__":
313
    B, T, H, HQ, D, S, block_size, dtype = 2, 64, 1, 16, 32, 1, 32, torch.float16
314
    torch.random.manual_seed(0)
315
316
317
318
319
320
321
322
    q = torch.randn((B, T, HQ, D), dtype=dtype, device="cuda").requires_grad_(True)
    k = torch.randn((B, T, H, D), dtype=dtype, device="cuda").requires_grad_(True)
    v = torch.randn((B, T, H, D), dtype=dtype, device="cuda").requires_grad_(True)
    g_slc = torch.ones((B, T, HQ), dtype=dtype, device="cuda").requires_grad_(True)
    g_swa = torch.ones((B, T, HQ), dtype=dtype, device="cuda").requires_grad_(True)
    do = torch.randn((B, T, HQ, D), dtype=dtype, device="cuda")

    block_indices = torch.full((B, T, H, S), T, dtype=torch.long, device="cuda")
323
324
325
326
    for b in range(B):
        for t in range(T):
            for h in range(H):
                i_i = torch.randperm(max(1, (t // block_size)))[:S]
327
                block_indices[b, t, h, : len(i_i)] = i_i
328
329
    block_indices = block_indices.sort(-1)[0]

330
    block_counts = torch.randint(1, S + 1, (B, T, H), device="cuda")
331

332
    ref = naive_nsa(
333
334
335
        q=q,
        k=k,
        v=v,
336
337
        g_slc=g_slc,
        g_swa=g_swa,
338
339
340
        block_indices=block_indices,
        block_counts=block_counts,
        block_size=block_size,
341
    )
342

343
    tri = parallel_nsa(
344
345
346
        q=q,
        k=k,
        v=v,
347
348
        g_slc=g_slc,
        g_swa=g_swa,
349
350
        block_indices=block_indices,
        block_size=block_size,
351
352
        block_counts=block_counts,
    )
353

354
355
    print("tri", tri)
    print("ref", ref)
356
357

    torch.testing.assert_close(ref, tri, atol=1e-2, rtol=1e-2)