example_triton_cast_to_fp8.py 5.32 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# SPDX-License-Identifier: Apache-2.0

# Adapted from https://github.com/sgl-project/sglang/pull/2575
from typing import Optional, Tuple

import torch
import triton
import triton.language as tl


@triton.jit
def _per_token_group_quant_fp8(
    # Pointers to inputs and output
    y_ptr,
    y_q_ptr,
    y_s_ptr,
    group_size,
    # Num columns of y
    y_num_columns,
    y_row_stride,
    # Avoid to divide zero
    eps,
    # Information for float8
    fp8_min,
    fp8_max,
    # Meta-parameters
    BLOCK: tl.constexpr,
):
    """A Triton-accelerated function to perform per-token-group
    quantization on a tensor.
    This function converts the tensor values into float8 values.
    """
    groups_per_row = y_num_columns // group_size

    # Map the program id to the row of X and Y it should compute.
    g_id = tl.program_id(0)
    row = g_id // groups_per_row
    row_g_id = g_id % groups_per_row

    y_ptr += (row * y_row_stride) + (row_g_id * group_size)
    y_q_ptr += g_id * group_size
    y_s_ptr += g_id

    cols = tl.arange(0, BLOCK)  # N <= BLOCK
    mask = cols < group_size

    y = tl.load(y_ptr + cols, mask=mask, other=0.0).to(tl.float32)
    # Quant
    _absmax = tl.maximum(tl.max(tl.abs(y)), eps)
    y_s = _absmax / fp8_max
    y_q = tl.clamp(y / y_s, fp8_min, fp8_max).to(y_q_ptr.dtype.element_ty)

    tl.store(y_q_ptr + cols, y_q, mask=mask)
    tl.store(y_s_ptr, y_s)


@triton.jit
def _per_token_group_quant_fp8_colmajor(
    # Pointers to inputs and output
    y_ptr,
    y_q_ptr,
    y_s_ptr,
    group_size,
    # Num columns of y
    y_num_columns,
    y_row_stride,
    # Stride from one column to the next of y_s
    y_s_col_stride,
    # Avoid to divide zero
    eps,
    # Information for float8
    fp8_min,
    fp8_max,
    # Meta-parameters
    BLOCK: tl.constexpr,
):
    """A Triton-accelerated function to perform per-token-group
    quantization on a tensor.
    This function converts the tensor values into float8 values.
    """
    groups_per_row = y_num_columns // group_size

    # Map the program id to the row of X and Y it should compute.
    g_id = tl.program_id(0)
    row = g_id // groups_per_row
    row_g_id = g_id % groups_per_row

    y_ptr += (row * y_row_stride) + (row_g_id * group_size)
    y_q_ptr += g_id * group_size

    # Convert g_id the flattened block coordinate to 2D so we can index
    # into the output y_scales matrix
    blocks_per_row = y_num_columns // group_size
    scale_col = g_id % blocks_per_row
    scale_row = g_id // blocks_per_row
    y_s_ptr += scale_col * y_s_col_stride + scale_row

    cols = tl.arange(0, BLOCK)  # group_size <= BLOCK
    mask = cols < group_size

    y = tl.load(y_ptr + cols, mask=mask, other=0.0).to(tl.float32)
    # Quant
    _absmax = tl.maximum(tl.max(tl.abs(y)), eps)
    y_s = _absmax / fp8_max
    y_q = tl.clamp(y / y_s, fp8_min, fp8_max).to(y_q_ptr.dtype.element_ty)

    tl.store(y_q_ptr + cols, y_q, mask=mask)
    tl.store(y_s_ptr, y_s)


def per_token_group_quant_fp8(
    x: torch.Tensor,
    group_size: int,
    eps: float = 1e-10,
    dtype: Optional[torch.dtype] = None,
    column_major_scales: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Function to perform per-token-group quantization on an input tensor `x`.
    It converts the tensor values into signed float8 values and returns the
    quantized tensor along with the scaling factor used for quantization.
    Args:
        x: The input tensor with ndim >= 2.
        group_size: The group size used for quantization.
        eps: The minimum to avoid dividing zero.
        dtype: The dype of output tensor. Note that only `torch.float8_e4m3fn`
        is supported for now.
    Returns:
        Tuple[torch.Tensor, torch.Tensor]: The quantized tensor and the
        scaling factor for quantization.
    """
131
    assert x.shape[-1] % group_size == 0, f"the last dimension of `x` {x.shape[-1]} must be divisible by `group_size` {group_size}"
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    assert x.stride(-1) == 1, "`x` groups must be contiguous"

    finfo = torch.finfo(dtype)
    fp8_min = finfo.min
    fp8_max = finfo.max

    x_q = torch.empty_like(x, device=x.device, dtype=dtype)
    M = x.numel() // group_size
    N = group_size
    if column_major_scales:
        shape = (x.shape[-1] // group_size,) + x.shape[:-1]
        x_s = torch.empty(shape, device=x.device, dtype=torch.float32).permute(-1, -2)
    else:
        shape = x.shape[:-1] + (x.shape[-1] // group_size,)
        x_s = torch.empty(shape, device=x.device, dtype=torch.float32)

    BLOCK = triton.next_power_of_2(N)
    # heuristics for number of warps
    num_warps = min(max(BLOCK // 256, 1), 8)
    num_stages = 1
    if column_major_scales:
        _per_token_group_quant_fp8_colmajor[(M,)](
            x,
            x_q,
            x_s,
            group_size,
            x.shape[1],
            x.stride(0),
            x_s.stride(1),
            eps,
            fp8_min=fp8_min,
            fp8_max=fp8_max,
            BLOCK=BLOCK,
            num_warps=num_warps,
            num_stages=num_stages,
        )
    else:
        _per_token_group_quant_fp8[(M,)](
            x,
            x_q,
            x_s,
            group_size,
            x.shape[1],
            x.stride(0),
            eps,
            fp8_min=fp8_min,
            fp8_max=fp8_max,
            BLOCK=BLOCK,
            num_warps=num_warps,
            num_stages=num_stages,
        )

    return x_q, x_s